Recursive scheme of the perturbation theory for high

Motivation Method Results Outlook
Recursive scheme of the perturbation theory
for high-precision calculations
in atoms and ions
Dmitry A. Glazov
Department of Physics
Saint-Petersburg State University
2017-05-19
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Outline
1
Motivation
2
Method
3
Results
Binding energies
Nuclear recoil effect
g factor
4
Outlook
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Interelectronic interaction: Breit approximation
Dirac-Coulomb-Breit Hamiltonian


X
X
H = Λ+ 
h(j) +
VBreit (j, k) Λ+
j
j<k
h = α · p + βm + Vnuc (r )
MBPT and various all-order methods based on:
Dirac-Fock equation
CI-DFS
effective potentials
MCDF
configuration interaction
RPP
coupled cluster
...
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Interelectronic interaction: QED+Breit
1/Z
1/Z 2
1/Z 3
...
Breit
QED
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Interelectronic interaction: QED+Breit
1/Z
1/Z 2
1/Z 3
...
Breit
QED
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Requirements to the new method
When the lowest orders are treated within QED
and the remainder within the Breit approximation,
there are special demands:
1
provide control over low orders of PT
2
take into account higher orders of PT
3
tame an exponential growth for higher orders
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Concept of the new method
1
One-electron basis set: |ni = |nr jlMi
is constructed within the DKB-splines method
2
Many-electron basis set: |Ni = |n1 , n2 , . . . , ns i
consists of Slater determinants
3
Many-electron matrix elements
4
Recursive perturbation theory
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
DCB Hamiltonian with screening potential
Zeroth-order Hamiltonian
H0 =
X
h(j)
j
h = α · p + βm + Vnuc (r ) + Vscr (r )
Perturbation
H1 =
X
VBreit (j, k) −
j<k
VBreit = α
X
Vscr (rj )
j
α1 · α2 1
1
−
− (α1 · ∇1 )(α2 · ∇2 )r12
r12
r12
2
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Perturbation theory
Zeroth-order problem
H0 |Ai = EA |Ai
Exact problem
(H0 + H1 )|Ãi = ẼA |Ãi
Perturbation expansion
ẼA =
∞
X
(k )
EA
(0)
EA = EA
k =0
|Ãi =
∞
X
|A(k ) i
|A(0) i = |Ai
k =0
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Perturbation theory
For non-degenerate state |Ai one finds
∆E (1) = hA|H1 |Ai
∆E (2) =
X ′ hA|H1 |NihN|H1 |Ai
EA − EN
N
∆E (3) =
X ′ hA|H1 |MihM|H1 |NihN|H1 |Ai
M,N
(EA − EM )(EA − EN )
− hA|H1 |Ai
X ′ hA|H1 |NihN|H1 |Ai
N
(EA − EN )2
∆E (k ) comprises (k − 1)-fold summation → N k −1 terms
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Perturbation theory: recursive scheme
ẼA =
∞
X
(k )
|Ãi =
EA
k =0
(k )
EA
=
X
∞
X
k =0
hA|H1 |MihM|A
hA|A
(k )
∞ X
X
|NihN|A(k ) i
k =0 N
(k −1)
i−
k −1
X
(j)
EA hA|A(k −j) i
j=1
M
hN|A(k ) i =
|A(k ) i =
1
EA − EN


kX
−1
X
(j)

hN|H1 |MihM|A(k −1) i −
E hN|A(k −j) i
A
j=1
M
k −1
1 X X (j)
i=−
hA |MihM|A(k −j) i
2
j=1 M
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Systems investigated to date
One-determinant states:
He-like: (1s)2
Li-like: (1s)2 2s, (1s)2 2pJ
Total energy: E[(1s)2 2s], E[(1s)2 2pj ]
Ionization energy: E[(1s)2 2s/2pj ] − E[(1s)2 ]
Be-like: (1s)2 (2s)2
B-like: (1s)2 (2s)2 2pJ
Total energy: E[(1s)2 (2s)2 2pj ]
Ionization energy: E[(1s)2 (2s)2 2pj ] − E[(1s)2 (2s)2 ]
Fine structure: E[(1s)2 (2s)2 2p3/2 ] − E[(1s)2 (2s)2 2p1/2 ]
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Lithium atom
Coulomb potential
CH: core-Hartree potential
Z ∞
dr ′
Vscr (r ) =
0
α
ρ1s (r ′ )
max(r , r ′ )
2
2
(r ))
(r ) + F1s
ρ1s (r ) = 2 (G1s
CH1 : 1/2 of core-Hartree potential
2
2
(r ))
(r ) + F1s
ρ1s (r ) = (G1s
Glazov et al., NIMB (2017)
MBPT: Yerokhin, Artemyev, Shabaev, PRA (2007)
all-order: Yan, Drake, PRL (1998)
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Lithium atom: (1s)2 2s ionization energy [a.u.]
PT order
0
1
2
3
4
5
6
7
8
9
10
0–∞
all-order
Coulomb
−1.125 169
1.193 706
−0.250 663
−0.008 396
−0.004 363
−0.001 812
−0.000 741
−0.000 328
−0.000 187
−0.000 100
−0.000 029
−0.198 149
CH1
−0.572 597
0.435 989
−0.058 851
−0.000 628
−0.001 662
−0.000 280
−0.000 091
−0.000 035
−0.000 012
−0.000 004
−0.000 003
−0.198 176
−0.198 159 72
Dmitry A. Glazov
CH
−0.183 10
−0.021 61
0.011 59
−0.009 40
0.008 40
−0.008 15
0.008 35
−0.008 91
0.009 79
−0.011 01
0.012 62
?
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Systems investigated to date
One-determinant states:
He-like: (1s)2
Li-like: (1s)2 2s, (1s)2 2pJ
Total energy: E[(1s)2 2s], E[(1s)2 2pj ]
Ionization energy: E[(1s)2 2s/2pj ] − E[(1s)2 ]
Be-like: (1s)2 (2s)2
B-like: (1s)2 (2s)2 2pJ
Total energy: E[(1s)2 (2s)2 2pj ]
Ionization energy: E[(1s)2 (2s)2 2pj ] − E[(1s)2 (2s)2 ]
Fine structure: E[(1s)2 (2s)2 2p3/2 ] − E[(1s)2 (2s)2 2p1/2 ]
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
B-like argon: (1s)2 (2s)2 2pj — ionization energies [eV]
PT order
3
4
5
6
7
...
12
13
14
15
3–∞
CI-DFS
2p1/2
LDF
PZ
0.3560
0.4209
−0.5623 −0.5219
0.1644
0.1284
0.0581
0.0583
−0.0608 −0.0474
...
...
0.0016
0.0011
−0.0005 −0.0001
−0.0003 −0.0002
0.0002
0.0001
−0.0296
0.0471
−0.0295
0.0470
2p3/2
LDF
PZ
0.4706
0.5294
−0.5970 −0.5535
0.1575
0.1222
0.0710
0.0689
−0.0669 −0.0520
...
...
0.0018
0.0013
−0.0006 −0.0002
−0.0002 −0.0002
0.0002
0.0001
0.0516
0.1249
0.0515
0.1246
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
B-like argon: (1s)2 (2s)2 2pj — ionization energies [eV]
2p1/2
Term
(0)
EDirac
(1)
EBreit
(2)
EBreit
(>3)
EBreit
(1)
EQED
(2)
EQED
Erec
Etotal
2p3/2
LDF
PZ
−757.0075 −757.7629
LDF
PZ
−753.8815 −754.5449
0.1972
1.5045
−0.0477
1.1541
1.6916
1.0632
1.5335
0.9219
−0.0295
0.0470
0.0515
0.1246
−0.0041
−0.0042
0.0018
0.0018
−0.0157
0.0040
−0.0156
0.0040
−0.0160
0.0039
−0.0162
0.0039
−755.1639 −755.1640
−752.3545 −752.3546
Glazov et al., NIMB (2017); Malyshev et al., NIMB (2017)
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Perturbation theory for matrix elements
∆EA [W ] =hÃ|W |Ãi
∞
X
(k )
∆EA [W ]
=
k =0
(k )
∆EA [W ] =
k
X
hA(j) |W |A(k −j) i
j=0
=
k X
X
hA(j) |MihM|W |NihN|A(k −j) i
j=0 M,N
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Nuclear recoil effect
HM = HNMS + HSMS + HRNMS + HRSMS
HNMS =
1 X 2
pj
2M
j
HSMS
1 X
=
pj · pk
2M
j6=k
HRNMS
HRSMS
"
#
(αj · rj )rj
1 X αZ
αj +
· pj
=−
2
2M
rj
r
j
j
"
#
(αj · rj )rj
1 X αZ
αj +
=−
· pk
2
2M
rj
r
j
j6=k
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Nuclear recoil effect: Li-like ions
Li-like ions
2s–2pJ transitions: E [(1s)2 2pJ ] − E [(1s)2 2s]
CI-DFS: Kozhedub et al., PRA 81, 042513 (2010)
1/Z + CI-DFS: Zubova et al., PRA 90, 062512 (2014)
∆E [HM ] =
K
M
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Li-like U: (1s)2 2p1/2 –(1s)2 2s
Z = 92
PT order
0
1
2
3
4
2–∞
0–∞
Coulomb potential
NMS
−3629.96
−3629.93
−45.40
−45.42
11.039
−0.327
0.006
10.72
10.5
−3664.64
−3664.8
SMS
−4925.25
−4925.25
299.48
299.49
−6.879
0.112
−0.002
−6.77
−6.7
−4632.54
−4632.5
[THz amu]
RNMS
3930.05
3930.03
−28.38
−28.37
−7.705
0.255
−0.004
−7.46
−7.2
3894.21
3894.4
RSMS
3929.40
3929.40
−267.26
−267.27
6.896
−0.109
0.001
6.79
6.5
3668.93
3668.6
1/Z + CI-DFS: Zubova et al., PRA 90, 062512 (2014)
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
logo-spbu.png
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
Nuclear recoil effect: B-like ions
B-like ions
Fine structure: E [(1s)2 (2s)2 2p3/2 ] − E [(1s)2 (2s)2 2p1/2 ]
CI-DFS: Zubova et al., PRA 93, 052502 (2016)
∆E [HM ] =
K
M
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
B-like ions: 2p3/2 –2p1/2 fine structure
Z = 20
[THz amu]
KS
LDF
CI-DFS
NMS
−1.8424
−1.8350
−1.843
SMS
1.2661
1.2593
1.260
RNMS
1.4163
1.4191
1.417
Z = 92
RSMS
−1.9770
−1.9806
−1.978
[THz amu]
CH
KS
CI-DFS
NMS
−2967.8
−2967.8
−2968.
SMS
1967.9
1967.7
1968.
RNMS
2530.1
2529.4
2531.
RSMS
−2898.2
−2896.8
−2899.
CI-DFS: Zubova et al., PRA 93, 052502 (2016)
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor: positive-energy states
Hmagn = µ0 HU
X
U=
αj × rj z
∆EA = gA MA µ0 H
gA [+] =
j
(k )
∆gA [+] =
1
hÃ|U|Ãi
MA
k
1 X (j)
hA |U|A(k −j) i
MA
j=0
=
k
1 X X (j)
hA |MihM|U|NihN|A(k −j) i
MA
j=0 M,N
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor: negative-energy states
gA [−] =
(k )
∆gA [−]
=
2 X hp|U|ni +
hâ âp Ã|H1 |Ãi
MA p,n εp − εn n
k −1
2 X X X hp|U|ni
MA
ε − εn
p,n p
j=0 M,N
(k −j−1)
i
×hA |Mihâ+
n âp M|H1 |NihN|A
(j)
|pi : εp > 0
|ni : εn < 0
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like silicon
Z = 14
Dirac
QED ∼ α
QED ∼ α2
Nuclear recoil
Nuclear size
e-e interaction
Screened QED
Total theory
Experiment
1.998 254 751
0.002 324 044
−0.000 003 517 (1)
0.000 000 039 (1)
0.000 000 003
0.000 314 809 (6)
−0.000 000 236 (5)
2.000 889 892 (8)
2.000 889 890 (2)
Wagner et al., PRL 110, 033003 (2013)
Volotka et al., PRL 112, 253004 (2014)
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like silicon
Z = 14
Coulomb potential
PT order
1
2
3
4
5
total
3+
CI-DFS
CI
∆g × 109
321 437.2
−6 826.0 (2)
108.0 (19)
−12.5 (8)
−2.1 (2)
314 704.6 (21)
93.4 (21)
85. (22)
94.
the convergence of the PT expansion
is good
the uncertainty is determined
by the 3rd-order term
the uncertainty is 10 times smaller
than with CI-DFS
Yerokhin et al., arXiv:1705.04476
Dmitry A. Glazov
logo-spbu.png
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like silicon
Z = 14
Local Dirac-Fock potential
PT order
0
1
2
3
4
5
total
3+
CI-DFS
∆g × 109
349 635.9
−33 960.4 (1)
−970.0 (2)
−1.1 (11)
−0.4 (3)
0.0 (2)
314 702.4 (12)
−1.5 (12)
−5.0 (60)
the convergence of the PT expansion
is even better
the uncertainty is determined
by the 3rd-order term
the uncertainty is 5 times smaller
than with CI-DFS
the uncertainty is 2 times smaller
than with Coulomb potential
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like silicon
Z = 14
Local Dirac-Fock potential
PT order
0
1
2
3
4
5
total
∆g × 109
349 635.9
−33 960.4 (1)
−970.0 (2)
−1.1 (11)
−0.4 (3)
0.0 (2)
314 702.4 (12)
QED
+113.7
−4.2
±2.4
314 813.5 (12)(24)
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like silicon
Z = 14
Dirac
QED ∼ α
QED ∼ α2
Nuclear recoil
Nuclear size
e-e interaction
Screened QED
Total theory
Experiment
1.998 254 751
0.002 324 044
−0.000 003 517 (1)
0.000 000 039 (1)
0.000 000 003
0.000 314 809 (6)
0.000 314 809 (1)
0.000 314 813 (3)
−0.000 000 370 (7)
2.000 889 892 (8)
2.000 889 892 (6)
2.000 889 896 (6)
2.000 889 890 (2)
Volotka et al., PRL (2014)
Yerokhin et al., arXiv:1705.04476
this work
Volotka et al., PRL (2014)
Yerokhin et al., arXiv:1705.04476
this work
Wagner et al., PRL (2013)
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like calcium
Z = 20
Dirac
QED ∼ α
QED ∼ α2
Nuclear recoil
Nuclear size
e-e interaction
Screened QED
Total theory
Experiment
1.996 426 011
0.002 325 555 (5)
−0.000 003 520 (2)
0.000 000 062
0.000 000 014
0.000 454 290 (9)
0.000 454 296 (4)
−0.000 000 370 (7)
1.999 202 042 (13)
1.999 202 048 (10)
1.999 202 041 (1)
Volotka et al., PRL (2014)
this work
Volotka et al., PRL (2014)
this work
Koehler et al., NC (2016)
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Binding energies Nuclear recoil effect g factor
g factor of Li-like ions: conclusion
For low-Z Li-like ions:
accuracy of ∆gint within the Breit approximation
is improved by order of magnitude
accuracy of ∆gint is now determined
by the 3-photon QED contribution
accuracy of g is now mostly determined
by the screened QED contribution
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions
Motivation Method Results Outlook
Outlook
Further generalizations of the presented method
(quasi-)degenerate states
axially symmetric systems: DKB → ADKB
hÃ|W |Ãi →
X hÃ|W1 |ÑihÑ|W2 |Ãi
N
ẼA − ẼN
logo-spbu.png
Dmitry A. Glazov
Recursive perturbation theory in atoms and ions