The characteristic function for infinite Jacobi matrices, its logarithm, the spectral zeta function, and solvable examples František Štampach1 , Pavel Št’ovíček2 1 Department of Applied Mathematics, Faculty of Information Technology Czech Technical University in Prague, Czech Republic B [email protected] 2 Department of Mathematics, Faculty of Nuclear Science Czech Technical University in Prague, Czech Republic B [email protected] 3rd Najman Conference ON SPECTRAL PROBLEMS FOR OPERATORS AND MATRICES Biograd, Croatia September 16-20, 2013 The function F(x) Define F : D → C, F(x) = 1 + ∞ X (−1)m ∞ X ∞ X k1 =1 k2 =k1 +2 m=1 ... ∞ X km =km−1 +2 × xk1 xk1 +1 xk2 xk2 +1 . . . xkm xkm +1 where ( D= {xk }∞ k =1 ⊂ C; ∞ X ) |xk xk +1 | < ∞ k =1 Note that `2 (N) ⊂D Put F(x1 , x2 , . . . , xn ) = F(x1 , x2 , . . . , xn , 0, 0, 0, . . . ), F(∅) = 1 One has ! ! ∞ ∞ X X |F(x)| ≤ exp |xk xk +1 | , |F(x) − 1| ≤ exp |xk xk +1 | − 1 k =1 František Štampach, Pavel Št’ovíček k =1 The characteristic function for infinite Jacobi matrices ... 2/30 Basic properties of F(x) A recurrence rule ∞ ∞ F({xn }∞ n=1 ) = F({xn+1 }n=1 ) − x1 x2 F({xn+2 }n=1 ) more generally, for any k ∈ N, ∞ F({xn }∞ n=1 ) = F(x1 , . . . , xk ) F({xk +n }n=1 ) − F(x1 , . . . , xk −1 ) xk xk +1 F({xk +n+1 }∞ n=1 ) For x ∈ D, F(x) = lim F(x1 , x2 , . . . , xn ) n→∞ The function F is continuous on `2 (N) František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 3/30 F(x) and special functions The Bessel functions of the first kind: for w, ν ∈ C, ν ∈ / −N, ∞ wν w Jν (2w) = F Γ(ν + 1) ν + k k =1 The basic hypergeometric series (q-hypergeometric series): for t, w ∈ C, |t| < 1, F ∞ n o∞ X = 1+ (−1)m t k −1 w k =1 m=1 2 t m(2m−1) w 2m (1 − t 2 )(1 − t 4 ) . . . (1 − t 2m ) , −t w 2 ) = 0 φ1 (; 0; t ∞ X kY −1 q k (k −1) k z , (a; q)k = 1 − aq j (q; q)k (b; q)k Here 0 φ1 (; b; q, z) = k =0 František Štampach, Pavel Št’ovíček j=0 The characteristic function for infinite Jacobi matrices ... 4/30 A class of Jacobi matrices: a convergence condition Consider a symmetric (in general complex) Jacobi (tridiagonal) matrix λ1 w1 w1 λ2 w2 J= w2 λ3 w3 .. .. . . .. . ∞ where λ = {λn }∞ n=1 ⊂ C and w = {wn }n=1 ⊂ C \ {0} Denote der(λ) := the set of all finite accumulation points of λ Cλ0 := C \ {λn ; n ∈ N} The convergence condition ∞ X wn2 < ∞ for some and hence any z ∈ Cλ 0 (λn − z)(λ n+1 − z) n=1 Then wn2 n=1 (λn −z)(λn+1 −z) P∞ František Štampach, Pavel Št’ovíček converges locally uniformly on Cλ0 The characteristic function for infinite Jacobi matrices ... 5/30 The characteristic polynomial of a finite Jacobi matrix One has Put F(x1 , x2 , . . . , xn ) = det Xn where 1 x1 x2 1 x2 .. .. .. . . . Xn = . . . . . . . . . xn−1 1 xn−1 xn 1 γ2k −1 := w2j j=1 w2j−1 Qk −1 , γ2k := w1 Qk −1 j=1 w2j+1 w2j , k = 1, 2, 3, . . . Then γk γk +1 = wk Let Jn be the n × n truncation of the Jacobi matrix. Then det(Jn − zIn ) = n Y k =1 František Štampach, Pavel Št’ovíček ! γ12 γ22 γn2 (λk − z) F , ,..., λ1 − z λ2 − z λn − z The characteristic function for infinite Jacobi matrices ... ! 6/30 The characteristic function of J Put FJ (z) := F and for z ∈ / C \ der(λ), r (z) := γn2 λn − z ∞ X ∞ ! n=1 δz,λk k =1 (the number of occurrences of z in λ ; r (z) = 0 for z ∈ / {λn ; n ∈ N}) Lemma Suppose J fulfills the convergence condition. Then FJ (z) is a well defined analytic function on C \ {λn ; n ∈ N}, meromorphic on C \ der(λ) with poles at the points λn , n ∈ N, (not belonging to der(λ), however) of order at most r (λn ). František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 7/30 The zero set of the characteristic function of J Define the zero set n o Z(J) := z ∈ C \ der(λ); lim (u − z)r (z) FJ (u) = 0 u→z and the functions ξk (z), k = 0, 1, 2,..., on C\ der(λ) (w0 = 1), ( )∞ k 2 Y γ w j−1 j ξk (z) := lim (u − z)r (z) F u→z u − λj λj − u j=1 j=k +1 Remarks. (i) Notice that Z(J) ∩ C \ {λn ; n ∈ N} = FJ−1 (0) (ii) z ∈ Z(J) iff ξ0 (z) = 0 (iii) For k sufficiently large, )∞ !−1 ( k k Y Y γj 2 ξk (z) = wj−1 F (z − λj ) λj − z j=1 František Štampach, Pavel Št’ovíček j=1 λj 6=z The characteristic function for infinite Jacobi matrices ... j=k +1 8/30 The spectrum of J in C\ der(λ) Theorem Suppose the convergence condition on J is fulfilled and FJ (z) does not vanish identically on C \ {λn ; n ∈ N}. Then J determines unambiguously a closed operator in `2 (N) (denoted again by J), spec(J) \ der(λ) = specp (J) \ der(λ) = Z(J) The point spectrum of J is simple. If z ∈ Z(J), i.e. ξ0 (z) = 0, then ξ(z) = (ξ1 (z), ξ2 (z), ξ3 (z), . . .) is a corresponding eigenvector. František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 9/30 The case J is real Corollary Suppose J is is real and fulfills the convergence condition. Then J determines unambiguously a self-adjoint operator in `2 (N) and spec(J) ∩ (C \ der(λ)) = Z(J ) consists of simple real eigenvalues which have no accumulation points in R \ der(λ). František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 10/30 Example 1 J. Gard, E. Zakrajšek: J. Inst. Math. Appl. 11 (1973) Y. Ikebe, Y. Kikuchi, I. Fujishiro: J. Comput. Appl. Math. 38 (1991) λn = n and wn = w > 0 for all n ∈ N, 1 w w 2 w J= w 3 w .. .. .. . . . One has der(λ) = ∅, spec(J) = Z(J ), and for r ∈ Z+ , ! 2 ∞ γn F = w −r +z Γ(1 + r − z) Jr −z (2w) n − z n=r +1 Hence spec(J) = {z ∈ C; J−z (2w) = 0} Corresponding eigenvectors v (z) can be chosen as vk (z) = (−1)k Jk −z (2w), k ∈ N František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 11/30 Example 2 p λn = 1/n, wn = β/ n(n + 1) , for β > 0 and all n ∈ N, √ 1√ β/ 2 √ β/ 2 1/2 β/ 6 √ √ J= β/ 6 1/3 β/ 12 .. .. .. . . . Then, for r ∈ Z+ , ! ∞ γn2 z r −1/z 1 2β F Γ r +1− = Jr −1/z λn − z n=r +1 β z z and 2β spec(J) = z ∈ R \ {0}; J−1/z = 0 ∪ {0} z Corresponding eigenvectors v (z) can be chose as √ 2β vk (z) = k Jk −1/z , k ∈N z František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 12/30 Example 3 λn = q n−1 and wn = βq (n−1)/2 , with 0 < q < 1, β > 0, 1 β √ β q β q √ J= 2 β q q βq .. .. .. . . . Then, for r ∈ Z+ , ! ∞ r γn2 q qr β2 F = 0 φ1 ; ; q, − 2 λn − z n=r +1 z z and so spec(J) = z ∈ R \ {0}; 1 z ;q ∞ 1 β2 = 0 ∪ {0} 0 φ1 ; ; q, − 2 z z A corresponding eigenvector v (z) can be written in the form k −1 k k q q qk β2 (k −1)(k −2)/4 β ;q ; q, − 2 , k ∈ N vk (z) = q 0 φ1 ; z z z ∞ z František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 13/30 Example 4 A modification of Example 3 → an unbounded Jacobi operator λn = q −n+1 and wn = βq −(n−1)/2 where again 0 < q < 1, β > 0 1 β β q −1 βq −1/2 J= −1/2 −2 −1 βq q βq .. .. .. . . . Then, for r ∈ Z+ , ! ∞ γn2 F = 0 φ1 (; q r z; q, −q r +1 β 2 ) λn − z n=r +1 and so n o 2 spec(J) = z ∈ R; (z ; q)∞ 0 φ1 (; z; q, −qβ ) = 0 The k th entry of a corresponding eigenvector v (z) vk (z) = q k (k +1)/4 (−β)k −1 (q k z ; q)∞ 0 φ1(; q k z; q, −q k +1 β 2 ), k ∈ N František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 14/30 Example 5: Coulomb wave functions Y. Ikebe: Math. Comp. 29 (1975) For µ > 0, ν ∈ R, consider the Jacobi matrix J = J(µ, ν), with 1/2 ν 1 (µ + k )2 + ν 2 λk = , wk = , k ∈N (µ + k − 1)(µ + k ) µ + k 4(µ + k )2 − 1 Then ∞ ! Γ γk 2 F = −1 λk − ζ k =1 1 2 +µ− 1 2 √ √ 1 + 4νζ Γ 21 + µ + 12 1 + 4νζ Γ(µ)Γ(µ + 1) × e−iζ 1 F1 (µ + iν; 2µ; 2iζ) This is expressible in terms of the regular Coulomb wave functions |Γ(L + 1 + iη)| L+1 −iρ ρ e 1 F1 (L+1−iη; 2L+2; 2iρ) Γ(2L + 2) n o spec(J(µ, ν))\{0} = ζ −1 ; 1 F1 (µ + iν; 2µ; 2iζ) = 0 FL (η, ρ) = 2L e−πη/2 Hence The components of an eigenvector can be expressed explicitly, too František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 15/30 Example 6: confluent hypergeometric functions √ λk = γk , wk = α + βk , k ∈ N, where β > 0, γ > 0, α + β > 0 √ γ α+β √ √α + β 2γ α + 2β √ √ J= α + 2β 3γ α + 3β .. .. .. . . . By the Weyl theorem, the spectrum is discrete (and simple). The convergence condition is violated. Considering the limit Jn → J, where Jn is the principal n × n submatrix of J, the characteristic function FJ (α, β, γ; z) equals α β z β z β β z − 2 − ;1 − 2 − ; 2 Γ 1− 2 − 1 F1 1 − β γ γ γ γ γ γ γ The components vk of a corresponding eigenvector v equal 1/2 (−1)k β k /2 γ −k Γ αβ + k β z β z β α − 2 − ; 1 − 2 − + k; 2 1F1 1 − β γ γ γ γ γ Γ 1 − γβ2 − γz + k František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 16/30 The particular case for α = 0, β = δ 2 , γ = 1 Put α = 0, β = δ 2 , γ = 1, with δ > 0. Hence √ λk = k , wk = δ k , k ∈ N, 1 δ √ δ 2 δ 2 √ √ J= δ 2 3 δ 3 .. .. .. . . . Then FJ (0, δ , 1; z) = e Γ 1 − δ2 − z 2 δ2 hence spec J(0, δ 2 , 1) = −δ 2 + N František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 17/30 Example 7: q-confluent hypergeometric functions For σ ∈ R and γ > −1 and 0 < q < 1, J = J(σ, γ) is defined by λn = q n−1 , wn = p 1 sinh(σ)q (n−γ−1)/2 1 − q n+γ , n ∈ N 2 The characteristic function of J(σ, γ) on C \ {0} equals cosh2 (σ/2)z −1 ; q ∞ × 1 φ1 q −γ cosh2 (σ/2)z −1 ; cosh2 (σ/2)z −1 ; q, − sinh2 (σ/2)z −1 where ∞ X 2 φ a; b; q, q z = (−1)k q k (k −1)/2 1 1 k =0 (a; q)k zk (b; q)k (q; q)k is the q-confluent hypergeometric function, (a; q)k is the q-Pochhammer symbol. The entries of an eigenvector corresponding to an eigenvalue z 6= 0 can be expressed in terms of 1 φ1 as well. František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 18/30 The particular case for γ = 0 Put γ = 0 (and still σ ∈ R) hence λn = q n−1 , wn = p 1 sinh(σ)q (n−1)/2 1 − q n , n ∈ N 2 The characteristic function of J(σ, 0) on C \ {0} equals FJ (σ, 0; z) = cosh2 (σ/2)z −1 ; q ∞ − sinh2 (σ/2)z −1 ; q ∞ Hence specJ(σ, 0) \ {0} = František Štampach, Pavel Št’ovíček n o q k cosh2 (σ/2); k = 0, 1, 2, . . . n o ∪ −q k sinh2 (σ/2); k = 0, 1, 2, . . . The characteristic function for infinite Jacobi matrices ... 19/30 The q-Bessel function and the function F Assume 0 < q < 1. The second definition of the q-Bessel function (q ν+1 ; q)∞ x ν q ν+1 x 2 (2) ν+1 Jν (x; q) = ; q, − 0 φ1 ; q (q; q)∞ 2 4 where 0 φ1 is the basic hypergeometric series, ∞ X q k (k −1) φ (; b; q, z) = zk 0 1 (q; q)k (b; q)k k =0 For 0 < q < 1, w, ν ∈ C, F q −ν w −(ν+k )/2 q − q (ν+k )/2 ∈ / q Z+ , one has ∞ = 0 φ1 (; q ν ; q, −q ν+1/2 w 2 ) k =0 One can prove that ∞ 2 X (2) (2) 2 J0 (2w; q) + q k /2 + q −k /2 q k /2 Jk (2w; q)2 = (−w 2 ; q)∞ k =1 František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 20/30 Example 8: q-Bessel functions Suppose 0 < q < 1, β ≥ 0; z ∈ C is a spectral parameter. The bilateral difference equation q (n−1)/2 βvn−1 + (q n − z) vn + q n/2 βvn+1 = 0, n ∈ Z written in the matrix form (J − z)v = 0 where J = J(β, q) is a Jacobi matrix operator in `2 (Z) with λn = q n , wn = q n/2 β, n ∈ Z Proposition The spectrum of J(β, q) is pure point and simple, specp J(β, q) = −β 2 q Z+ ∪ q Z o n (+) (+) ∞ Eigenvectors v m = vm,k k =−∞ with the eigenvalues q m , m ∈ Z, (+) (+) (2) vm,k = q (m−k )(m−k +1)/4 J−m+k (2q −m/2 β; q), v m 2 = (−q −m β 2 ; q)∞ František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 21/30 The logarithm of F(x) For x = {xk }∞ k =1 ⊂ C such that log F(x) = − ∞ X X P∞ k =1 |xk xk +1 | α(m) ∞ d(m) Y X < log 2 one has xk +j−1 xk +j mj k =1 j=1 N=1 m∈M(N) where, ∀m ∈ N` , `−1 ` X 1 Y mj + mj+1 − 1 α(m) := , d(m) := `, |m| := mj m1 mj+1 j=1 j=1 and ( M(N) := m∈ N [ ) ` N ; |m| = N , ∀N ∈ N `=1 The logarithm formula can also be interpreted in the ring of formal power series C[[x1 , x2 , x3 , . . .]]. František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 22/30 A Hilbert-Schmidt matrix operator on `2 (N) Suppose x = {xk }∞ k =1 fulfills xk > 0, ∀k , and ∞ X Put xk xk +1 < ∞ k =1 A= 0 a1 0 0 a1 0 a2 0 0 a2 0 a3 0 0 a3 0 .. .. .. .. . . . . ··· ··· ··· ··· .. . √ , where ak = xk xk +1 , k ∈ N A is a Hilbert-Schmidt operator on `2 (N), its Hilbert-Schmidt norm kAk22 = 2 ∞ X k =1 |ak |2 = 2 ∞ X xk xk +1 k =1 The characteristic function of A is analytic on C \ {0}, n x o∞ k FA (z) = F z k =1 František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 23/30 The spectral zeta function of A−2 If P∞ k =1 1/x2k −1 = ∞ then 0 is not an eigenvalue of A. Put f (z) = FA (z −1 ) = F({z xk }∞ k =1 ) f (z) is the characteristic function of A−1 ; it is entire, even, with simple real roots. Let 0 < ζ1 < ζ2 < ζ3 < . . . be its positive roots; limk →∞ ζk = ∞. The spectral zeta function of A−2 is, at the same time, the Rayleigh-like function for f (z), ZA−2 (s) := Tr A2s = 2 ∞ X ζk−2s , Re s ≥ 1 k =1 Using the logarithm formula for F one derives that, ∀N ∈ N, ZA−2 (N) = 2N X m∈M(N) František Štampach, Pavel Št’ovíček α(m) ∞ d(m) X Y xk +j−1 xk +j mj k =1 j=1 The characteristic function for infinite Jacobi matrices ... 24/30 Several first values of the spectral zeta function For example, the first three values on N of the spectral zeta function ZA−2 are ∞ X 1 xk xk +1 ZA−2 (1) = 2 k =1 ∞ ∞ X X 1 2 2 Z −2 (2) = xk xk +1 + 2 xk xk2+1 xk +2 2 A k =1 1 Z −2 (3) = 2 A ∞ X k =1 xk3 xk3+1 k =1 +3 +3 ∞ X xk xk3+1 xk2+2 k =1 ∞ X +3 ∞ X xk2 xk3+1 xk +2 k =1 xk xk2+1 xk2+2 xk +3 k =1 František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 25/30 Example: Bessel functions and the Rayleigh function Recall that, for ν > −1 and w ∈ C, ∞ wν w Jν (2w) = F Γ(ν + 1) ν + k k =1 Let 0 < jν,1 < jν,2 < jν,3 < . . . be the positive roots of Jν (z). For values on 2N of the Rayleigh function (as originally introduced for Bessel functions) we get, ∀ ∈ N, ∞ X k =1 1 jν,k 2N =2 −2N N ∞ X X d(m) α(m) k =1 m∈M(N) j=1 For example, ∞ X 1 1 = , 2 4(ν + 1) jν,k k =1 ∞ X k =1 1 jν,k 6 František Štampach, Pavel Št’ovíček = Y 1 (j + k + ν − 1)(j + k + ν) ∞ X 1 1 = 4 4 jν,k 2 (ν + 1)2 (ν + 2) k =1 1 25 (ν + mj 1)3 (ν + 2)(ν + 3) , etc. The characteristic function for infinite Jacobi matrices ... 26/30 Example: the q-Airy function The Ramanujan function, also interpreted as the q-Airy function 2 ∞ X qn Aq (z) := 0 φ1 ( ; 0; q, −qz) = (−z)n (q; q)n n=1 We still suppose 0 < q < 1 and z ∈ C. Recall that, for w ∈ C, n o∞ k −1 = 0 φ1 (; 0; q 2 , −qw 2 ) F q w k =1 Hence Aq (w 2 ) = F n o∞ wq (2k −1)/4 k =1 The zeros of Aq (z) are all positive and simple; denote them 0 < ι1 (q) < ι2 (q) < ι3 (q) < . . .. A formula for integer values of the Rayleigh-like function, ∀N ∈ N, ∞ X k =1 Nq N 1 = ιk (q)N 1 − qN where ∀m ∈ N` , 1 (m) = František Štampach, Pavel Št’ovíček P` j=1 (j X α(m) q 1 (m) m∈M(N) − 1) mj . The characteristic function for infinite Jacobi matrices ... 27/30 Several first values of the Rayleigh-like function for Aq Several first instances of the Rayleigh-like function for Aq ∞ X 1 ιk (q) = q 1−q 1 ιk (q)2 = q 2 (1 + 2q) 1 − q2 1 ιk (q)3 = q 3 (1 + 3q + 3q 2 + 3q 3 ) 1 − q3 1 ιk (q)4 = q 4 (1 + 4q + 6q 2 + 8q 3 + 8q 4 + 4q 5 + 4q 6 ) 1 − q4 k =1 ∞ X k =1 ∞ X k =1 ∞ X k =1 František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 28/30 Bibliography • F. Štampach, P. Št’ovíček: On the eigenvalue problem for a particular class of finite Jacobi matrices, Linear Alg. Appl. 434 (2011) 1336-1353 • F. Štampach, P. Št’ovíček: The characteristic function for Jacobi matrices with applications, Linear Alg. Appl. 438 (2013) 4130-4155 • F. Štampach, P. Št’ovíček: Special functions and spectrum of Jacobi matrices, Linear Alg. Appl. (2013) (in press), http://dx.doi.org/10.1016/j.laa.2013.06.024 František Štampach, Pavel Št’ovíček The characteristic function for infinite Jacobi matrices ... 29/30 THANK YOU FOR YOUR ATTENTION!
© Copyright 2026 Paperzz