Semi-classical introduction Atomic Hamiltonian: (ground state is 0 of energy) Dipole operator: H A 0 b b 0 Eb Ea a D d ab ( a b b a ) d ab b D a a D b e a r b Semi-classical laser field: Interaction Hamiltonian: b a b E(r , t ) E0 (r ) cos( Lt ) VAL D E (0, t ) b Stimulated absorption a atom at origin, dipole approximation Stimulated emission Schrödinger equation General state of atom: ca (0) 1 Initially: Schrödinger Eq: (1) L 0 (2) (t ) ca (t ) a cb (t ) b ei0t cb (0) 0 1 ica (t ) a ( D ) E0 b cb (t )(eit e i ( 20 )t ) 2 1 icb (t ) b ( D ) E0 a ca (t )(e it ei ( 20 )t ) 2 Perturbation theory Solution in atomic basis Dressed state Perturbation theory b VAL a 0 ca (t ) 1 1 (d ab ) E0 / i1t I (t ) I (t 2 0t ) cb (t ) 2 1 t 2 2 cb (t ) 2 4 I (t) I (t ) 2 i t / 2 e sin( t / 2) t I (t 2 0t ) 2 Re I (t ) I (t 2 0t ) 2 2 1 0.8 0.7 |I(t)| Finite time “delta” function 0.9 Fast oscillating overlap term 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 -30 -20 -10 0 t 10 20 30 1 t 2 cb (t ) 2 t 40 2 ( ) ( 20 ) Fermi golden rule Perturbation theory (2) cb (t ) 2 1 0 1 2 2 sin 2 (t / 2) |cb(1t)|2 0.01 0.009 perturbation theory 0.008 0.007 2 |cb(1t)| " exact" theory 0.006 0.005 0.004 0.003 0.002 0.001 0 0 0.5 1 1.5 2 2.5 1t 3 3.5 4 4.5 5 1 1 10 10 “Exact” solution in atomic basis ca (t ) 0 i i ( 2 0 ) t it c ( t ) 2 e e b 1 1 eit e i ( 20 )t ca (t ) c (t ) 0 b Rotating wave approximation ca (t ) 0 i it c ( t ) 2 e b 1 ca (t ) e 12 2 it / 2 1eit ca (t ) 0 cb (t ) cos( t / 2 ) i sin( t / 2 ) 1 it / 2 cb (t ) i e sin( t / 2) Atomic basis occupations |c (t)| 2 0 b 1 0.9 0.21 0.8 21 |c (t)|2 b 0.7 2.21 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 t 20 25 30 Dressed state Complete Hamiltonian: H H A VAL Diagonalize New basis, in which initial condition (all the population in the ground state) is not an eigenstate Rabi oscillations are naturally understood Dressed state (2) Comfortable ansatz: Rotating wave frame (not an approximation!) (t ) ca (t ) a cb (t )eit i0t b Schrödinger Eq: ca (t ) 0 i cb (t ) 2 1 1 ca (t ) 2 cb (t ) Time independent matrix! Dressed state (3) Eigenvalues: 1 2 2 u 1 12 ( ) 2 v 1 1 0 1 b a ca (t ) 0 i cb (t ) 2 1 1 ca (t ) 2 cb (t ) 1 2 2 u 1 12 ( ) 2 v 1 1 12 Eb 4 12 Ea 4 1 0 1
© Copyright 2026 Paperzz