HIGH RESOLUTION SPECTROSCOPY ~ ~ 2 OF THE B A1 - X2A1 TRANSITION OF CaCH3 and SrCH3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University of Waterloo Metal Polyatomic Molecules • MCH3, MCCH, MSH, MNH2… – Interest in Catalysis, Organic Synthesis, Biological Systems, Astrochemistry… • Not As Well Characterized As Diatomic Counterparts • Lower Symmetry Complicates Spectra – Simplify Analysis by Characterizing these Species in a Molecular Jet/Laser Ablation Source – See TC08, TC09, and TC10 Alkaline - Earth Monomethyls • First Gas Phase Observation (Brazier and Bernath 1987) – Low Resolution Spectra: Ca and Sr Reacting w/Methyl Precursors ~2 ~2 • CaCH3 A E – X A1 (Brazier and Bernath 1989) – High Resolution Spectrum in Broida Oven ~2 ~2 • MgCH3 A E – X A1 (Rubino, Williamson and Miller 1995) – High Resolution Jet Cooled Spectrum Alkaline - Earth Monomethyls • Optical Stark Spectra CaCH3 (Marr et al 1996) ~2 ~2 – Determined Dipole Moments in A E and X A1 States • Millimeter-Wave Spectroscopy (Ziurys Group) – Ground State Pure Rotational Spectra of Mg, Ca, Sr, and BaCH3 • Low-Lying States Not all Well Characterized at High Resolution ~~ – Initiated a Study of the B-X Transitions of CaCH3 and SrCH3 Using Molecular Jet/Laser Ablation Techniques Laser Ablation Source Preamp I2 Cell w/ PMT Single Mode Ring Dye Laser Rod Rotator Scope Preamp Boxcar PMT Gas In (1% Sn(CH3)4 in Ar) Delay Box Backing Pressure (100 psi) Pulsed Valve Power Supply Pump YAG PC 3rd Harmonic Trot ~ 4–8 K ~2 ~2 B A1 – X A1 Transition • CaCH3 and SrCH3 B2 Σ+ ~ B2A1 – Prolate Symmetric Top – C3v Symmetry ~ • B2A1 Correlates to B2S – || type transitions – a-dipole moment – DK = 0 A2Π ~2 AE • Nuclear Spin Statistics – Rotationally Cool into Both K" = 0 and 1 Levels X 2Σ+ SrF CCv v SrCH3 C3v C 3v ~ X 2A1 High Resolution Spectra CaCH3 and SrCH3 ~2 ~ 2A - X SrCH3 B A1 1 ~2 ~2 CaCH3 B A1 - X A1 0 2 4 6 8 -1 Relative Wavenumber (cm ) 10 Energy Level Diagram K = 0 Sub-Band J N K 3.5 F2 F1 1.5 2.5 0.5 1.5 0.5 F1 2.5 R Q21 R R22 P P Q12 • Resembles Hund’s Case(b) 2S – Case(b) 2S Transition • 4 Main Branches • 2 Satellite Branches R P22 R11 P P11 • Branch Notation DNDJFi'Fi" 3.5 2.5 F1 F2 2.5 1.5 1.5 0.5 0.5 F1 • F1: J = N + S; F2: J = N – S Energy Level Diagram K = 1 Sub-Band J N K F2 5.5 F1 4.5 3.5 4.5 2.5 3.5 1.5 2.5 0.5 1.5 R R22 Q Q Q22 P R12 P Q12 P P22 P11 O P12 Q Q Q11 R Q21 P21 R R11 S R21 3.5 2.5 2.5 1.5 1.5 0.5 F1 F2 • Resembles Hund’s Case(b) 2P – Case(b) 2P Transition • 6 Main Branches • 6 Satellite Branches ~2 ~2 SrCH3 B A1 – X A1 K = 0 and 1 Sub-Bands 1.5 0.5 R 2 P 2 1.5 K=0 0.5 R 1 P 1 0.5 PQ R 12 2.5 R P 1 K=1 1.5 1.5 Q Q R 12 2 5.5 P Q 12 14786 1.5 1 P 1.5 0.5 Q 21 1.5 Q 1 14787 0.5 R 0.5 2 P 21 0.5 4.5 Q2 14788 -1 wavenumber (cm ) R 1.5 Q 21 14789 Results and Analysis SrCH3 • Data Fit to Symmetric Top Hamiltonian ~2 ~2 – 108 B A1 – X A1 Transitions and Pure Rotational Transitions – Fit Using Pickett’s Program Parameter ~ X2A1 ~ B2A1 T 0.0 14787.58135(64) A 5.393a 5.31139(84) B 0.193833336(24) 0.193603(14) DN 2.14893(16) x 10-7 0.0 DNK 1.61313(77) x 10-5 5.4(1.8) x 10-5 eaa 0.0 -0.2523(21) (ebb+ecc)/2 4.12162(51) x 10-3 -0.14879(11) a) Fixed to Theoretical Value (Chan and Hamilton 1998) ~2 ~2 CaCH3 B A1 – X A1 K = 0 Sub-Band 0.5 P Q 12 1.5 P 2 1.5 P 1 R 0.5 Q 21 R 0.5 2 R 0.5 1 Q Branch K = 1? 16009 16010 16011 -1 Wavenumber (cm ) 16012 ~2 ~2 CaCH3 B A1 – X A1 K = 1 Sub-Band 0.5 P R Q 12 1.5 1.5 P 1.5 2.5 Q P 12 2 P P 2 1.5 P R 0.5 2 R 0.5 1 1 1.5 QP 21 0.5 Q 1 Q Q , R 2 12 1 16009 0.5 Q 21 R 0.5 Q 21 R 0.5 2 R 0.5 1 16010 s 16011 -1 Wavenumber (cm ) R 1.5 21 16012 ~2 CaCH3 B A1 Perturbation -1 Relative Energy (cm ) 15 10 J F2 N 6.5 F1 7 7.5 6 ~2 CaCH3 B A1State Energy Levels 5.5 6.5 5 4.5 5.5 5 4 3.5 4.5 3 2.5 3.5 0 1.5 2 2.5 0.5 1 1.5 0 0.5 K=0 ~2 CaCH3 B A1 Perturbation -1 Relative Energy (cm ) 15 10 5 0 J F2 N 6.5 F1 7 7.5 ~2 CaCH3 B A1State Energy Levels J N 7.5 6.5 7 F1 F2 5.5 6.5 6.5 5.5 6 5 4.5 5.5 5.5 4.5 5 3.5 4.5 4.5 3.5 4 3 2.5 3.5 3.5 2.5 2.5 1.5 1.5 0.5 3 6 4 1.5 2 2.5 0.5 1 1.5 0 0.5 K=0 K=1 2 1 F2 Levels Pushed Down ~2 CaCH3 B A1 Perturbation 16020 ~75 cm -1 ~2 B A1 K=1, F1, F2 ~2 A E3/2 (v3=3) K=0, F1, F2 16000 ~3 cm 15960 -1 Energy (cm ) 15980 15940 ~2 A E1/2 (v3=3) ~2 A E3/2 (v3=0) 14780 F2 14760 14740 14720 ~2 A E1/2 (v3=0) 14700 F1 -1 Results and Analysis CaCH3 • K = 0 Sub Band Fit to Symmetric Top Hamiltonian ~2 ~2 – 58 K = 0 B A1 – X A1 Transitions and Pure Rotational Transitions • Calculated Term Values for K' = 1 Levels Parameter ~ X2A1 ~ B2A1 T 0.0 16010.19538(60) A 5.44831a B 0.252384881(25) DN 3.54514(29) x 10-7 DNK 1.99593(32) x 10-5 0.2532525(98) eaa (ebb+ecc)/2 a) Fixed to Optical Value 1.47842(41) x 10-3 -0.03604(12) ~2 Pure Precession in CaCH3 and SrCH3 B A1 • Spin Rotation Constants – Assume Unpaired Electron in a p Orbital – Unique Perturber Assumption (ebb + ecc)/2 = – 2l(l+1)BAso ~ ~ DEB-A CaCH3 CaCH3 SrCH3 SrCH3 cm-1 Measured Calculated Measured Calculated (ebb+ ecc)/2 -0.03604 -0.053 -0.14879 -0.209 – Relatively Good Agreement with Pure Precession Approximation Structure • Rotational Constants Fit to C3v Moment of Inertia Equations State CaCH3 ~ 2A X CaCH3 ~ B2A SrCH3 ~ 2A X SrCH3 ~ B2A rM-C (Å) 2.348 2.155 2.487 2.492 rC-H (Å)a 1.102 1.102 1.104 1.104 105.3 b 105.8 a 107.0 1 qH-C-H (º) 105.3 1 1 1 a) Fixed to DFT Calculations (Chan and Hamilton 1998) b) Fixed to Ground State Value ~ – CaCH3 B State Structure Not Reliable ~ – SrCH3 B State M-C Bond Slight Increase: H-C-H Angle Opens Future Work and Acknowledgements ~2A ~ 2E - X SrCH3 A 1/2 1 13652 13654 13656 13658 -1 wavenumber (cm ) Funding: NSERC 13660
© Copyright 2026 Paperzz