LOG-ICAL SYSTEMS
WITH
FINITELY
I.ÎANY TRUTH VALUES
G. ROUSSEAU
T h e s is su b m itte d f o r th e
d e g re e o f D octor o f P h ilo so p h y
a t th e U n iv e r s ity o f L e ic e s te r,
1967
UMI Number: U296357
All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,
a note will indicate the deletion.
Disscrrlation Publishing
UMI U296357
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.
ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346
7
'^
3 (.)
7
) /
To th e memory o f
FEUX
BEHEEND
Acknowledgement
The a u th o r w ish es to e x p re ss h i s w arm est th a n k s to
P r o fe s s o r R .L .G o o d stein who supervised, th e p re p a r a tio n
o f t h i s t h e s i s 4,
D uring th e co u rse o f th e r e s e a r c h .
P r o fe s s o r G oodstein h as been a c o n tin u in g so u rc e o f
encouragem ent, and has a s s i s t e d th e a u th o r in many ways
b o th m a th em atical and n o n -m a th e m a tic a l;
he has g iv e n
u n s t i n t i n g l y o f h i s tim e and a d v ic e th ro u g h o u t#
th e s e th in g s th e a u th o r i s d e ep ly g r a t e f u l .
iii
For
C ontents
Acknowledgement
iii
I n tr o d u c tio n
C h ap ter I .
1
Sequents i n many v a lu e d lo g ic *
1.
C alcu lu s o f se q u e n ts f o r c l a s s i c a l n—v a lu e d p r e p o s i t i o n a l c a lc u lu s
2.
C alcu lu s o f se q u e n ts f o r i n t u i t i o n i s t i c n -v a lu e d p r e p o s i t i o n a l c a lc u lu s .
C h ap ter I I .
A lg e b ra ic methods#
5
8
19
33
1.
P o s t a lg e b r a s and p se u d o -P o st a lg e b r a s
34
2.
A p p lic a tio n s to p r e p o s itio n a l c a l c u l i
45
C h ap ter I I I # S h e ffe r fu n c tio n s #
55
1#
S h e ffe r f u n c tio n s in c l a s s i c a l n—v a lu ed lo g ic
57
2#
S h e ffe r fu n c tio n s i n i n t u i t i o n i s t i c lo g ic
64
B ib lio g ra p h y
71
I n tr o d u c tio n
I n c l a s s i c a l and i n t u i t i o n i s t i c l o g i c , th e n o tio n o f v a l i d i t y c an be
d e fin e d s e n a n t i c a l l y
by th e methods of T a rs k i and K ripke r e s p e c t i v e l y .
I f we re p la c e the two tr u th - v a lu e s o c c u rrin g i n th e s e d e f i n i t i o n s by a
s y s ta n o f
n
t r u t h —v a lu e s we o b ta in v h a t may be r e f e r r e d to a s c l a s s i c a l
n -v a lu e d l o ^ c an d i n t u i t i o n i s t i c n -v a lu e d lo g ic r e s p e c t i v e l y .
has b een s tu d ie d by many v ;r ite r s b eg in n in g w ith P o s t [ l l ] ;
n o t seem to have been c o n sid e re d p r e v io u s ly .
The form er
th e l a t t e r does
T h is th e s i s w i l l be concerned
w ith c l a s s i c a l and i n t u i t i o n i s t i c n -v a lu e d p r e p o s it io n a l c a l c u l u s .
I t is
p o s s ib le t o c o n s id e r p re d ic a te c a l c u l i by th e same methods ( o f R ousseau [ I 9 ] ) ,
b u t th e b a s ic p r i n c i p l e s a r e i n e v id e n c e a lre a d y in ihe p r e p o s iti o n a l c a s e .
Gents en [ 4 ] in tro d u c e d two system s
LK
and
L J,
fo r c l a s s i c a l and
i n t u i t i o n i s t i c lo g i c r e s p e c tiv e ly , b ased on the n o tio n o f s e q u e n t.
C h ap ter 1 w i l l be concerned w ith t h e many—v a lu ed an alo g u es o f th e s e c a l c u l i .
We shoviT t h a t f o r each choice o f n -v a lu e d t r u t h —fu n c tio n s th e re e x i s t
c o rre sp o n d in g s e q u e n t c a l c u l i
LKn
and
LJn
tb r the c l a s s i c a l and th e
i n t u i t i o n i s t i c n -v a lu e d p r o p o s itio n a l c a lc u lu s r e s p e c t i v e l y .
The method
o f seq u e n ts seems to have c e r t a i n ad v an tag es f o r t h e stu d y of m any-valued
lo g ic over th e t r a d i t i o n a l methods as developed say by R o sser an d Tui*quette [ I 6 ] :
(i)
as th e above r e s u l t in d ic a te s^ th e method i s co m p letely in d e p en d e n t o f t h e
c h o ice o f p r im itiv e tr u t h - f u n c tio n s ; ( i i )
no a r b i- tr a r y c h o ice o f d e sig n a te d
t r u th - v a lu e s i s n e c e s s a ry s in c e d e s ig n a te d v a lu e s p la y no p a r t ,
On th e o th e r
hand c e r t a i n r e s u l t s on a x io m a tiz a b ility o f m any-valued p r e p o s i t i o n a l c a l c u l i
can be d e riv e d i n th e p r e s e n t c o n te x t .
th e c a l c u l i
LICn an d
G entzen*s c a l c u l i
LJ^
LIC and
The c h ie f m o tiv a tio n f o r s tu d y in g
however i s "fco o b ta in a b e t t e r u n d e rs ta n d in g of
L J,
and th e r e l a t i o n betw een them .
—1 —
I n C hapter I I we s tu d y c l a s s i c a l and i n t u i t i o n i s t i c n -v a lu e d p r e p o s i tio n a l
c a l c u l i from th e a lg e b r a ic s ta n d p o in t.
As is w ell-know n, th e r e p r e s e n ta tio n
th e o ry o f B oolean and pseudo-B oolean a lg e b ra s can be a p p lie d to e s t a b l is h th e
com pleteness o f a x io m a tiz a tio n s o f c l a s s i c a l and i n t u i t i o n i s t i c
p r o p o s itio n a l c a l c u l i .
The same approach can be used to o b ta in
a x io m a tiz a tio n s of c l a s s i c a l and i n t u i t i o n i s t i c n -v a lu e d p r o p o s itio n a l
c a l c u l i ( f o r s u ita b le ch o ice o f p r im itiv e tr u t h - f u n c tio n s and d e sig n a te d
v a lu e ) .
The a p p r o p r ia te a lg e b r a ic system s h e re a re th e P o s t a lg e b ra s
and th e p seu d o -P o st a l g e b r a s .
The fo rm er have b een s tu d ie s by Rosenbloom [ I 5 ] ,
E p s te in [3 ],T ra c z y k [2 9 , 30]5
th e l a t t e r have n o t been c o n sid e re d p r e v io u s ly ,
A stu d y o f th e r e p r e s e n ta tio n th e o r y o f th e s e a lg e b r a s p ro v id e s th e to o ls
n e c e s s a ry to prove th e com pleteness of s u i t a b l e a x io m a tiz a tio n s o f c l a s s i c a l
and i n t u i t i o n i s t i c n -v a lu e d p r o p o s itio n a l c a l c u l i .
I n C hapter I I I we stu d y an a s p e c t of th e p ro b la n o f com pleteness f o r
system s o f tru th -fu n c tL o n s
i n c l a s s i c a l and i n t u i t i o n i s t i c n -v a lu e d l o g i c .
We g iv e a sim ple a lg e b r a ic c h a r a c te r iz a t i o n o f th e S h e ff e r fu n c tio n s o f
c l a s s i c a l n -v a lu e d lo g ic ( c f , Rousseau [ 2 0 ] ) , w hich g e n e r a liz e s a r e s u l t o f
P o s t [ 12 ] f o r th e case
n = 2
and a r e s u l t of W heeler [ 32 ] f o r th e case
n = 3 • Also we o b ta in some p a r t i a l r e s u l t s on S h e ffe r f u n c tio n s in
i n t u i t i o n i s t i c two—v a lu e d l o g i c .
We BOW in tro d u c e th e b a s ic s y n t a c t i c a l and s e m a n tic a l
u sed th ro u g h o u t ih e w o rk ,
n o tio n s to be
F o r the c l a s s i c a l n -v a lu e d p r o p o s itio n a l c a lc u lu s
th e s e n o tio n s o c cu r i n esse n ce a lr e a d y in P o st [ l l ] , w h ile th e s e m a n tic a l
n o tio n s f o r th e i n t u i t i o n i s t i c n -v a lu e d
-
2
-
p r o p o s itio n a l c a lc u lu s a r e
o b ta in e d by g e n e r a liz in g the d e f i n i t i o n s o f K ripke [7] f o r the
case
n = 2,
The p r o p o s itio n a l c a lc u lu s ,
i n th e fo llo w in g m anner.
A p r o p o s itio n a l c a lc u lu s i s d eterm in ed
We s e l e c t a s e t
E = [ e o , © i,
!
of
tr u t h - v a lu e s w hich i s to renm in f ix e d th ro u g h o u t, and a s e t o f t r u t h fu n c tio n s
E : E^
argum ents o f
E,
-> E ,
The i n t e g e r
r(E ) i s th e number o f
and w i l l be d en o ted by
In a d d itio n we s e l e c t a s e t
each t r u t h - f unet i 0n
E
r
when
no a m b ig u ity i s p o s s i b l e .
V o f p r o p o s itio n a l v a r ia b le s and f o r
a co rre sp o n d in g c o n n e c tiv e , a ls o denoted t y
P.
The form ulas a re th e e lem en ts o f th e l e a s t s e t o f e x p re s s io n s
w hich c o n ta in s
V and v ;h ich , f o r each c o n n e c tiv e
P ( a i, . . . , ap)
w henever i t c o n ta in s
c ti,
E , c o n ta in s
« p . The degree o f a
form ula i s th e number o f o c c u rre n c e s o f c o n n e c tiv e s
The s e t of fo rm u las w i l l be denoted by
S
w i l l be denoted by th e l e t t e r s
...
C la s s ic a l S e m a n tic s .
V : V
in i t .
and in d iv id u a l fo rm u las
.
'
By a ( c l a s s i c a l ) v a lu a tio n we mean a map
S which a s s ig n s to each p r o p o s itio n a l v a r ia b le a t r u t h —v a lu e .
The v a lu e v * (a )
o f the form ula
a (w ith r e s p e c t to
d eterm ined by th e re q u ire m e n t t h a t
t h a t f o r each c o n n e c tiv e
v*
a g re e s w ith
v
i s u n iq u e ly
fo r
and
a € Y
E we have
v » (E (% i, . . . , %p)) = E (v * (a i) ,
f o r a r b i t r a r y fo rm u las
v)
a x , . . . , ccp.
- 3 -
v»( op) )
In o th e r w o rd s, i f
considered as" a lg e b r a s w ith o p e ra tio n s
homomorphism w hich extends th e mapping
.
E,
th e n
v : V -» E .
v* : S
S
and
E
E
is a
a re
I n t u i t i o n i s t i c sem a n tic s .
where
A
o f mappings
V
a
, (a )
monotone
w henever À ^
monotone fa m ily [v ^ j^ e
a t th e
E,
a c V
v ^ (a ) ^
a
^ ^
i s an a r b i t r a r y p a r t i a l l y o rd e re d s e t , w i l l be c a l l e d
i f f o r each
Given
A fa m ily
p o in t
Ike v a lu e v ^ * (a )
A f A(w ith r e s p e c t to
d eterm ined by t h e re q u ire m e n t t h a t
[v ^ j^
ç A^
a g re es w ith
o f a fo rm u la
^
v^
u n iq u e ly
fo r
a c 7
and
t h a t f o r each c o n n e c tiv e we have
...,a
f o r a r b i t r a r y form ulas
fo rm ulas
a i,
• , , , «p .
)) = i n f
P(v * ( « i ) ,
E v id e n tly we have fo r a l l
a
Y^**‘(a ) ^
■^f*(a)
7/henever À ^ A' .
—4 -
• • • j V *(ap))
C hapter I : Sequents i n Many V alued Logic
I n t h i s C hapter we c o n s tr u c t se q u e n t c a l c u l i f o r th e c l a s s i c a l and
i n t u i t i o n i s t i c n -v a lu e d p r o p o s itio n a l c a l c u l u s .
S e c tio n 1 d e a ls w ith th e c l a s s i c a l p r o p o s itio n a l c a lc u lu s ,
The seq u e n ts o f ihe fo rm
ro*=> P i
w hich ap p ear
a re re p la c e d by seq u e n ts o f ihe form
Po, P i,
.
Pn- i
Pol P i |
C entaen^s work [ 4 ]
in
|P n -i>
where
o-re f i n i t e s e t s o f fo rm u la s . We f i r s t pro v e a lemma f o r
n -v a lu e d t r u thr-funcuLons r a t h e r analogous to th e c o n ju n c tiv e norm al form
f o r two—v a lu e d tr u t h - f u n c tio n s .
T his e n a b le s u s to fo im u la te in tr o d u c tio n
r u le s in th e manner o f G en tzen ,
C entzen has two
each c o n n e c tiv e , one on th e l e f t o f a seq u e n t
rig h t;
s i m i l a r l y we have
n
in tr o d u c tio n r u le s f o r
Po=> P i
and one on ih e
in tr o d u c tio n r u l e s f o r each c o n n e c tiv e ,
one f o r e a c h p la c e cf th e se q u e n t
P o |P i |
• • • |Pn-i • Each
in tr o d u c tio n
r u l e i s r e v e r s i b l e i n th e se n s e t h a t th e c o n c lu s io n i s v a l i d i f and only
i f th e p rem isses a re v a l i d .
p ro p e rty
The com p leten ess o f th e r u l e s fo llo w s from i h i s
by a sim ple in d u c tiv e argum en t.
v a lu e s we can d e fin e v a l i d i t y f o r fo rm u la s ;
I f we in tro d u c e d e s ig n a te d
th e co m p leten ess of the
c a lc u lu s o f sequents im p lie s th e com p leten ess o f s u it a b le a x io m a tiz a tio n s
o f th e s e t of v a lid fo r m u la s .
W ith th e e x c e p tio n o f Theorem 6 , a l l the
r e s u l t s o f t h i s s e c tio n a p p e a r in
[ l9 ] •
I n S e c tio n 2 we c o n sid e r th e i n t u i t i o n i s t i c p r o p o s itio n a l c a lc u lu s .
The n o tio n o f seq u e n t has to be somewhat r e s t r i c t e d , so t h a t
Pol P i I
o ccu rs,
w ith
jPn-i
in a l l
i > m.
i s a sequent only i f f o r each a
Pi
w ith
i
m or
a
in
Tm
o c cu rs i n a l l
P&
e ith e r
This r e s t r i c t i o n does not a l t e r th e c la s s o f sequents
a
i n th e tv;o—v a lu e d c a s e .
as
i n th e c l a s s i c a l case we prove a lemma
w hich e n ab le s us to fo rm u la te in tr o d u c tio n v a lu e s f o r each c o n n e c tiv e ;
th e r e a r e
2 (n - 1)
such r u l e s f o r each c o n n e c tiv e i n t h i s c a s e .
It
i s e a sy to show th a t th e r u le s p re s e rv e v a l i d i t y , v h il e on th e o th e r
an
hand a system atic a tte m p t to f in d a p ro o f f o r im p ro v a b le se q u e n t le a d s
in
to a monotone fa m ily which e s ta b lis h e s i t s ^ a l i d i t y . As in th e
c l a s s i c a l case we can d e fin e v a l i d i t y o f fo rm u las r e l a t i v e t o a s e t o f
d e s ig n a te d v a lu e s and i n f e r th e com pleteness of s u i t a b l e
a x io m a tiz a tio n s from the co m p le ten e ss o f th e s e q u e n t c a lc u lu s .
We
ap p ly t h i s metliod in th e two—v a lu e d case to a x io m a tize any fra g m e n t o f
th e i n t u i t i o n i s t i c p r o p o s itio n a l c a lc u lu s w hich in c lu d e s im p l ic a ti o n .
Our se q u e n t c a l c u l i a re proved com plete e s s e n t i a l l y by th e
fo llo w in g method:
we a tte m p t i n a s y s te m a tic way to c o n s t r u c t a p ro o f
f o r a giv en se q u e n t II ;
e i t h e r th e a tte m p t su cceed s an d II
i s p ro v a b le ^
o r i t f a i l s , and th e r e s u l t i n g s tr u c tu r e can be t r a n s l a t e d , in to an
i n t e r p r e t a t i o n , in vdiich II
is not s a tis fie d .
In the tw o -v alu ed case
t h i s method has b een e x p lo ite d by many a u th o rs , in c lu d in g
B eth , R anger,K rip k e , Rasiowa and S ik o rsk L ,
S c h u tte ,
E or r e f e r e n c e s , s e e Rasiowa .
and S ik o r s k ix [13 ] and K ripke [ 7 ] •
I t w i l l be c o n v en ie n t i n t h i s C hapter t o i d e n t i f y th e tr u t h - v a l u e s
w ith n a tu r a l numbers:
eo = 0 ,
Gi = 1 , . . . , Gn_i = n-1 .
F i n i t e s e ts o f s ta te m e n ts w i l l b e denoted by th e l e t t e r s
—
6
—
P, A, ...
,
I t i s o f te n co n v en ien t to w r i t e
re s p e c tiv e ly .
An i n t e r v a l of
[m : mi ^ m
nig}
where
a
E
mi , m^
and
m fo r
[a j
and
[mj
i s any s u b s e t of th e form
a re elem en ts o f
E;
in p a r t i c u l a r
th e empiy s e t i s an i n t e r v a l .
The p o s s i b i l i t y o f c o n s tr u c tin g seq u e n t c a l c u l i f o r c l a s s i c a l and
i n t u i t i o n i s t i c n—v a lu e d p r o p o s itio n a l c a lc u lu s r e s t s u l tim a t e ly on th e
fo llo T fing sim ple p r o p o s itio n ;
*L e t
E
be a tr u t h - f u n c t i o n o f
su b set o f
—
■
E.
Then f o r a s u ita b le f i n i t e fa m ily of s e t s
" ' — -----------------------------------------
(i € I; j = 1,
R be any
R Î'. C E
J'—
r ) we have
F(xi,
i f d c p ire d th e s e ts
of
r = r( F ) argum ents and l e t
,.
Xp) e
R^
R <=>
A [xi e E.|'
ic I
V . . . V Xp c Rp ] ;
can be ta k e n to be complements o f i n t e r v a l s
E.
P ro o f.
L et
I
c o n s is t of a l l
F ( k i , . . . , kp) / R,
r-tu p le s
and f o r each such
- 7 -
1 = (k i,
i
le t
R^
. . . , kp) e E*^
such t h a t
= E - {kjj ( j = 1 , .
r)
1.
C alcu lu s o f seq u e n ts f o r c l a s s i c a l
n -v a lu e d
p r o p o s itio n a l c a lc u lu s
A seq u e n t i s an e x p re s s io n o f the form
Po (Pi I
where
•••
Po , Pi , .
I Pn-2 I Pn-i
Pn- i
,
a r e f i n i t e s e t s o f fo rm u la s ,
Sequents w i l l be denoted by th e l e t t e r s
se q u e n t
n
(1 ),
and
Z
p la c e i s
E
th e n t h e
II
Q.
If
i s th e s e t
II
i s th e
II[m] = Pm • I f
a re se q u e n ts th e n we d en o te by II Z th e se q u e n t whosô mth
II[m] u Z[m]
th e n we denote by
mf R
mth p la c e of
11,2,
and
(m » 0 , 1,
| P | t h e
n u l l o th e r w is e .
n - l).
seq u en t whose
I f E.
is a su b set of
mth p la c e i s
P
if
A s e q u e n t i s s a i d to be elem en ta ry i f each
fo rm u la o c c u rrin g i n i t i s a p r o p o s itio n a l v a r i a b l e .
The v a lu a tio n
( 2)
v
m € V (Pm)
i s s a i d to s a t i s f y th e seq u e n t
f o r some
(1 )
if
mc E,
The s e t cf v a lu a tio n s w hich s a t i s f y
II
i s denoted by
s01) •
C le a rly we have
(3)
V € s (|a |g ^ ) <=> v - ( a ) c R
(4 )
sCHi
..« I l k ) = 0 (Hi) U .
U odk)
We say t h i t ih e seq u en t
II
ev ery v a l u a t i o n .
M o f se q u e n ts is s a id to be sim u lta n e o u s ly
A set
i s v a lid
(Val II)
#
i f i t i s s a t i s f i e d by
s a ti s fia b le i f
n
n cM
The p r o p o s itio n
fl (lI)
.
.(^) r e f e r r e d to above has th e fo llo w in g more
p r e c is e v e r s io n , a p p lic a b le i n th e c l a s s i c a l c a s e .
- 8 -
LEÎ.ÜÎA. 1 .
of r
F ^ arguments and any t r u t h —v a lu e
F o r any tr u t h - f u n o tlo n
th e r e e x i s t s a fa m ily o f s e t s
( 5)
C E (i e I ;
j = 1,
r)
m,
su ch t h a t
F (x x , .
Xp) = m<?=> A [ XieE.*' v . . . v Xp c r/: ] ,
i€ l
^ =
We oan suppose the number of co n ju n o ts Ï to be a t m ost n^"^ ,
and t h i s bound i s b e s t p o s s i b l e .
P ro o f.
Any s u b s e t
S
of
E*'
can be e x p re sse d as th e uniom o f
c a r t e s i a n p ro d u c ts o f su b se ts o f
E.
In f a c t , i f
r >1
th e n
nT“ ^
S
is
th e u n io n o f a l l th e p ro d u c ts
[m ii X . . . x[nV '-ii X {m :(m i, . . . , nh-i , m) f Sj
such t l i a t (m i, . . . , n h - i) ^
, The f i r s t p a r t of ihe Lemma now
fo llo w s by a n a p p lic a tio n of t h i s rem ark to th e s e t
= E ^ - F“^ (m ),
S = [ (m%, . . .,mp) : m% + . . . + mp 3 O(mod n) ]
On th e o th e r hand th e s e t
h as
S
n! ^ elem en ts b u t in c lu d e s no c a r t e s i a n p ro d u c t w ith
one e lem en t;
L et
from t h i s we e a s i l y deduce i h a t th e bound i s
F
be any t r u t h - f u n c tio n s of
be any t r u t h - v a l u e .
i c i
le t
If
(%%, . . . , ccp
n^((% 1 , . . . , ttp)
more th a n
b e s t p o s s ib le
r = r(F ) argum ents and l e t
a r e any fo rm u la s , th e n f o r each
b® th e seq u en t
By ( 3 ) , (4 ) and ( 5 ) we o b ta in
(6 )
b (|
F(ai , .. . , a p ) Im) =
u s in g th e f a c t t h a t
If
n
v"^; 8
E
A s 0I l («i , . . . , a p ) ) ,
id
i s a homomorphism.
i s an a r b i t r a r y seq u en t th e n we have ^
a (n IF (a 1 , • •
&r)lm ) ~ A
id
- 9 ~
m
(4 )
and
(6)
s (ÜL (i%i , # . , ,ap ) ) ,
z'
whence i t fo llo w s th% t
(7)
V al n |F ( a i , . . . , a p ) | m <==^ A V al II H t (a 1 , , . . , a p ) .
id
There i s a r e l a t i o n of ihe form ( 7 ) fo r each cormeo tiv o o f th e
p r o p o s itio n a l c a lc u lu s and each tr u t h - v a l u e
c a lc u lu s
LK,
m.
we a re le d to c o n s id e r f o r e ac h
By a n alo g y w ith G entzen’ s
F
and
m an
in tr o d u c tio n r u le o f ihe form :
(P^m) :
We say t h a t
s e q u e n ts
( i f I)
II IF (a 1 ^ ***f ^ r ) |in
Q i a an im m ediate consequence by r u l e (F,m) o f th e
(i c l )
ùi
n
has th e form Il|F (a 1, .
if
Q has th e form I I I I i(iz 1 ,
each
se q u e n t o f th e form
( m = 0 , 1,
n-1 )
(I)
«p)
ap)| n,
( i c i ) . An
w h ile
elem en ta ry
is c a ll e d a fundam ental se q u e n t i f ihe
have a t l e a s t one f o r mil a i n common.
Pm
The s e t o f
p ro v a b le seq u e n ts i s th e l e a s t s e t w hich c o n ta in s a l l fundam ental
se q u e n ts and which c o n ta in s a seq u e n t
seq u e n ts
ru le
Oj, ( i
f
l)
of w hich
Q
Q w henever i t
i s an
c o n ta in s
im m ediate consequena® by some
(F ,m) ,
THEOREM 2 ,
P r o o f,
A seq u e n t i s v a l i d i f and o n ly i f i t i s p r o v a b le .
Each fundam ental s e q u e n t i s v a l i d ;
consequence o f v a lid se q u e n ts i s v a l i d ;
by
( 7)
an im m ediate
c o n se q u e n tly e v e ry p ro v ab le
se q u e n t i s v a l i d .
For each seq u e n t
o c c u rrin g i n
Q
Q, l e t
and l e t
o f form ulas o f degree
m Q be th e maximum d eg ree o f fo rm u las
n Q be th e number o f o c c u rre n c e s in
m Q.
L et
Q be a v a lid s e q u e n t.
—10 —
If
Q
nfi = 0
th e n
Q
i s elem en ta ry ;
fu n d am ental s e q u e n ts ;
hence
t h a t a l l v a l i d seq u en ts
(i)
or
S in ce
b u t a l l v a l i d elem en tary se q u e n ts a re
Z
Ü
i s p r o v a b le .
If
m Q > 0,
we suppose
a re p ro v a b le f o r w hich
mZ < mn ,
(ii)
m Z = mQ and
m fi > 0 ,
n Z < n Û•
Ù may be e x p re ss e d in the form
n ( F (a 1 , •«*, ^r)lni
where
F (a i ,
n o t o ccu r i n
a re v a l i d ;
ap )
n[m ] .
i s o f degree
(7)
By
mQ
and
th e seq u en ts
F (cci , . . . /%p )
II lit (ai
b u t fo r each of th e s e seq u e n ts c i t h e r
so by in d u c tiv e h y p o th e sis each is p ro v a b le ;
b ein g an im m ediate consequence by rul@
ap )
(i)
hence
does
or
( i f l)
(ii)
h o ld s ,
Q i s p ro v a b le ,
(F,m) o f p ro v a b le s e q u e n ts .
Thus e v e ry v a lid seq u e n t i s p ro v a b le , and t h i s com pletes the p r o o f .
As a c o r o lla r y o f Theorem 2 v/e have th e fo llo w in g an alo g u e of
G entzen’s H au p tsatz
If
n | a 1^
and
s e q u e n t, p ro v id e d
f o r h is sy ste m
| a | gZ
R
LKî
a re p ro v ab le s e q u e n ts ,
and
th e n
HZ
i s a p ro v a b le
S a re d is jo in t.
T his could a l s o be e s ta b lis h e d p r o o f - t h e o r e t i c a l l y in the manner o f G entzen [4 ] .
A lso a t t h i s sta g e we no te t h a t the com pactness theorem h o ld s in th e
fo llo w in g form ;
THEOREM 3 •
A s e t of se q u e n ts i s sim u lta n e o u s ly s a t i s f i a b l e i f an d o n ly i f
ev ery f i n i t e s u b s e t i s s im u lta n e o u s ly s a t i s f i a b l e .
—1-1 —
P ro o f.
I t i s easy to check t h a t th e s e t s o f the form
b a se fo r the c lo s e d s e t s in ihe space
th e a s s e r t i o n t h a t
b QI)
form a
so th e Theorem am ounts sim ply to
Y
E i s com pact.
To d eterm ine th e in tr o d u c tio n r u l e s fb r a g iv e n co n n ectiv e
F,
we have on ly to o b ta in a s u i t a b l e r e l a t i o n o f the form ( 5 ) f o r
th e c o rre sp o n d in g t r u t h - f u n c tio n .
T his may be done i n a v a r i e t y o f w ays,
and i n p r a c tic e i t is n a t u r a l to choose ihe s im p le s t o r most e l e g a n t .
I n view of Lemma 1
,
th e number o f p rem isses can aLv/ays be l im it e d to
By way o f example v/e c o n s id e r th e th r e e - v a lu e d .Lukasiew icz
c o n n e c tiv e s
C,K,A,N
whose t r u t h - t a b l e s a r e t h e fo llo w in g ;
c
G 1
2
K 0
1
2
A 0
1
2
0
2
2
2
0
0
0
0
0
0
1
2
1
1
2
2
1
0
1
1
1
1 1 2
2
0
1
2
2
0
1
2
2
2
2
N
2
co rresp o n d in g in tr o d u c tio n r u l e s , w r i t t e n i n
TIl (a 1 ,
. .,
%r)
( i ^ I)
I F(ctl , • • • yCCp ) 11
a re as fo llo w s ;
I
|oc
a\a\^
^1
\Cal3\
|g |g |g , ^ |
Kct^
cc\^\^
I
\(3\^
Iw l
-1 2 -
I
k-
|C a ^
IJA I Iw
^1
A
m
a |a |
I
|a , ^ |
|
|%,P
I
I
IA a^l
I
\AoLj3
I
I
I Net I
I
| m
L e t u s s in g le o u t a s u b s e t
D o f d e s ig n a te d t r u t h —v a l u e s .
I t is
th e n p o s s ib le to d e fin e th e v a rio u s s y n t a c t i c a l and s e m a n tic a l notiouA
f o r fo r m u la s .
if
Thus a v a lu a tio n
V'-'(a) c D;
we d en o te by
v
s(a )
i s s a i d to s a t i s f y th e fo rm u la
a
th e s e t o f v a lu a tio n s w hich s a t i s f y
a.
F or th e se q u e n t
I ^ I e -D
we s h a l l w r ite
r ||A ;
C s (y ) =
(8)
A fo rm u la
D
c l e a r l y we have
( ||);
s y
s(s) = s ( | | s ) .
a i s s a id to be v a l i d i f e v e ry v a lu a tio n
i s a n e le m e n t of
s(a );
a
i s s a id to be p ro v a b le i f ihe
seq u e n t | ja i s p ro v a b le .
a set
^
o f form ulas i s s im u lta n e o u s ly
s a tis fia b le i f A
S im ila r ly
s ( a ) ^ p' and
CL €
c o n s is te n t i f f o r no
F C jC i s
r| |
a p ro v a b le s e q u e n t.
The s y n t a c t i c a l and sem antical n o tio n s •sdiich we have d e fin e d a r e
r e l a t e d by th e fo llo w in g th e o re m ,
THEOREM 4 .
A fo rm u la i s v a l i d i f and o n ly i f i t i s p ro v a b le ;
a se t of
fo rm u las i s s im u lta n e o u s ly s a t i s f i a b l e i f and o n ly i f i t is c o n s i s t e n t .
P ro o f,
Theorems
2 and 3 a re e a s i l y s e e n to im ply a more g e n e ra l
p r o p o s itio n , namely t h a t the fo llo w in g two c o n d itio n s a r e e q u iv a le n t:
— 13 “•
(a)
n
Y
s (y )
e u
8(8) ,
S €D
(b)
r
II A
i s p ro v a b le f o r some F e
(4)
The p ro o f u se s
and
AC ^ .
( 8) .
For d ie rem ain d er of i h i s s e c tio n we s h a l l re g a rd the symbols
Fo > .
Fn- i
a p p e a rin g in th e s e q u e n t
o f fo rm u la s r a t h e r th a n s e t s .
(1 )
as d e n o tin g sequences
I t i s easy to check t h a t th e p re c ed in g
r e s u l t s rem ain tr u e i f we add r u l e s p e r m ittin g P e rm u ta tio n , Weakening
and C o n tr a c tio n .
We now show how to c h a r a c te r iz e th e s e t of v a l i d fo rm u las by means o f
axioms
and r u le s o f in f e r e n c e , i n th e manner
Thus v/e suppose t h a t c e r t a i n c o n n e c tiv e s
o f R osser and T u rq u e tte [16] ,
D , Jo ;
J n -i
d e fin a b le i n terras of ihe p r im itiv e c o n n e c tiv e s .
form ula and l e t
II
be th e seq u e n t
sequences o f fo rm u las) .
form ula
ai n
We form a new
Pm th e form ula
seq u e n t has th e form ulas
(1 )
(where nov/ th e
y
Pm
be any
denote
se q u e n t by s u b s t i t u t i n g f o r each
(Jm a D y )
a
L et
a re
(m e
E) .
in t h a t o r d e r ,
I f th e r e s u l t i n g
th e n
II'*' Y
i s d e fin e d as th e form ula
. . . 7 . gk F) Y
in p a rtic u la r i f
F o rg iv e n
F
and
II
i s th e n u l l seq u en t th e n
m le t
Hi ( a i ,
an enum eration of the s e q u e n ts
•
II*--y
i s the f o r m l a
. . . , % r), . . . , II,^ (a i, *. .,g r )
y
-
be
Hi,(cci , . , . ,a p ) ( i e l ) o c c u rrin g i n th e
p re m isse s of the in tr o d u c tio n r u l e
(F,m) .
Y/e c o n s id e r t h e foUovd.ng axiom schem es;
- 14 -
(A1)
a D
D a)
(A2)
a D Os D y ) . D . (a D
(A3)
(A 4)
I« I e " y
^
T i i ( ttx >*
(A3)
Jin (g) D
3 (a 3 y )
îlî
^
* *9
g
ap ) y ^ *
• • • ^ * (g i
f
» • .fg p ) Y ^
THEOREÎ/Î 3 c
F
îli
>
• • » i ? a p ) jfn Y
(m e d) .
Note t h a t th e r e i s a n axiom soheme of "the fo rm
a c o n n ec tiv e
I
and a tr u th - v a lu e
(AZ}-) f o r each ohoioo o f
m«
Ever y v a lid fo rm u la i s d e r iv a b le by means o f modus ponens
from th e ax iom schemes (A1 ) — (A3 ) •
Hence i f th e se axioms a r e v a l i d and
v a l i d i t y i s p re s e rv e d by modus ponens, t h e n a fo rm u la i s v a l i d , i f and
o n ly i f i t is d e r i v a b l e .
P r o o f.
Axioms
(A1)
and
(A2)
y i e l d th e d e d u c tio n theorem.-. I f
a fu ndam ental seq u e n t th e n f o r any fo rm u la
means o f
(A3 ) .
Qi , . .
by
Q i s a n im m ediate consequence o f
r u le
th e n th e fo rm u la
-Ql <Y ^ •. . .
i s d e riv a b le by means o f
th e n the form ula
Q'V
D T tI
(A4 ) • Thus i f
| |a'*'a
n- Y
Q
i s any p ro v a b le s e q u e n t,
i s d e riv a b le f o r a r b i t r a r y
v a l id fo rm u la , th e n by Theorem 4
th e fo rm u la
, "Y
||g
y*
Now i f
a
i s a p ro v ab le s e q u e n t.
i s d e r iv a b le , and so by (A3 ) th e form ula
is a
Hence
g
is
d e riv a b le ,
As a n o th e r a p p lic a tio n o f ihe method u sed i a p ro v in g Theorem 3 ,
we show how to a x io m a tiz e any f r a g iæ n t o f t h e c l a s s i c a l ttvo-valued
p r o p o s itio n a l c a lc u lu s which in c lu d e s i m p lic a tio n .
—13 ~
is
i-S d e riv a b le by
y
S im ila r ly i f
(F ,m ),
Q
T h is was f i r s t
done by Henkin [6 ] u sin g a n o th e r m ethod.
The s e t o f tr u th - v a lu e s i s
th e s e t
E =
and th e s e t
D
o f d e sig n a te d tr u th - v a lu e s c o n s is ts o f th e s in g le elem en t 1 ,
The seq u e n ts o f the c l a s s i c a l tw o-valu ed p r o p o s itio n a l c a lc u lu s a re
th e e x p re ss io n s of th e form
r I A
where
T
and
A a re f i n i t e sequences o f f o r m i l a s ,
We c o n sid e r any system of two—v alu ed tru th -fu n c tL o n s
Tfhich in c lu d e s im p lic a tio n
and suppose
F
has
L = (F , O)
and
r
.
L et
argum ents*
R = (F , 1)
Thus
and i = ( i , .
th e n l o t
ij =
ip ) e ET ,
be one o f th e s e tru th -fu n c tL o n s
We d eterm ine th e in tr o d u c tio n r u le s
by th e method u sed i n ih e o r i g i n a l p ro o f
o f ihe p r o p o s itio n (*'^’) •
Al fai ,
E
if
ai ,
gp
a re ^an y form ulas
T i (gi , . . gp )
gp) be a sequence c o n s is tin g o f th o s e
1r e s p . i j
= 0,
re s p .
aj
Then th e in tr o d u c tio n r u le s fo r
such t h a t
F
w r itte n i n th e f orm
L:
r ,
(g 1 ^ • • •> g p ) I ( g 1 J • • • J g p ) jA ( i
r ,F(oci ,
R:
r
f
(gi J
%
• • *9
F* ( i ) )
gp)IA
gp ) I ( g i ,
gp' ) jA ^ c F*” Co) )
r IF(gi,
gp ) >A
9 • • }
• • • f
• • • 9
— l6
—
may be
I f S I is
and Y
ih e
Y, ,
IA ’"
i-S any fo rm u la , t h e n l e t Q^Y
gi 7 •
■• ■ Z) # g% Z) »(/5i Z) Y^ ^ *
For
any g iv e n t r u t h - f u n c t i o n
le t
I I I , . . . , H jj r e s p ,
^ < F“^ (1 )
• • • Z!) #(^^ Z^ Y) 7 Y •
F fro m ih e sy stem
Fo , Fi , . . . ,
Zi , , , , , Sn be an en u m eratio n o f the se q u e n ts
F I (gl 9 •• *9 gp )
such t h a t
d en o te th e form ula
re sp ,
Z^(g% , • • »9 gp )
± € F*^ (o) .
We c o n s id e r th e fo llo w in g
axiom schemes:
Fj,(y) : I 1i " y ^ *
Rp(Y) Î
. . . 3 . IIijY 3) F (gi , ,
gp) | - Y ,
2 x* t 3 . . , , 3 . Z n " Y 3 |F ( c ti,
g p )- Y»
We o b ta in an a x io m a tiz a tio n of the c l a s s i c a l two—v a lu ed p r o p o s itio n a l
c a lc u lu s by ad d in g to th e s e th e schemes;
A1 :
D a) ,
A2 :
a r>03 n y ).D . ( « 3 ^ ) 3
(cc 3 y ) ,
to g e th e r v /ith th e r u l e modus ponens ,
THEOREM 6 ,
Afo rm u la
o f modusponens
i s v a lid i f and o n ly i f
from the
axiom schemes
i t is d e riv a b le by means
At , A2, L„ (y ) , Rr, (y ) . hr, (y ) .
JQ
i?0
-Cl
Cy ) ^ • • • •
R ro o f,
th e n
L et
Q=Y
y
be an a r b i t r a r y fo rm u la ;
i s d e r iv a b le ;
if
Q i s a fundamen-tal s e q u e n t,
i f a r u le o f th e s e q u e n t c a lc u lu s allow s Q
to be i n f e r r e d from p re m isse s
Q i ‘^ 0 .
Qi , , ,.,Q ^ ,
th e n th e form ula
. . . D Æ * Y 3 n-'Y
-1 7 -
i s d e r iv a b le ;
Q'Y
hence i f
i s d e r iv a b le .
Q
Now i f
i s any v a l i d s e q u e n t, t h e n t h e form ula
a
i s a v a l i d form ula th e n
iX a v a lid s e q u e n t, and c o n se q u e n tly th e fo rm u la
f o r any
y;
ia. d e r iv a b le .
in p a r t i c u l a r
ja'-ia
jg 'Y
ja
i s d e riv a b le
i s d e r iv a b le , and th e r e f o r e
a
T his shows t h a t e v ery v a l i d form ula i s d e r iv a b le ;
on th e o th e r hand modus ponens p re s e rv e s v a l i d i t y , a n d i t i s a
s tr a ig h tf o r w a r d m a tte r to check t h a t each axiom i s v a l i d ;
d e riv a b le form ula i s v a l i d , and t h i s com pletes th e p r o o f .
—18 —
th u s e v e ry
C alculus o f seoiien ts f o r i n t u l t l o n i s t l o n~valued p r o p o s itio n a l c a lc u lu s
2m
In t h is S ectio n the n o tio n o f sequent has to be r e s t r ic t e d , so
th e exp ression ( l ) i s a sequent i f and only i f f o r each formula
[m ; a c Tin Î
set
a Ç Pm
i s th e complement o f an in t e r v a l o f
a € Pm’
* * Pm* fo r a l l m* < m or
then e it h e r
E*
th a t
a
th e
Thus i f
m* > m.
fo r a ll
As in S e c tio n 1 seguents w i l l be denoted Ity th e l e t t e r s
Ve observe th a t th e n o tio n o f sequent as here d efin ed c o in c id e s w ith
employed in S e c tio n 1 only in th e case
The
p la ce II[m]
m
in S e c tio n 1#
If
n[m]
Z[m]
Q
II and Z are sequents then there e x i s t s a sequent,
If
p la ce
f o r each
whose
m^^ p la ce i s
P
p a r tic u la r , i f
R i s the s e t
lr|&
(^ esp . |r |^ * ) .
ty
lrln
A monotone fa m ily
fo r each
A e
o f S e c tio n 1 ;
A
v/e w r ite
if
(m = 0 , 1 , . . . , n—1)*
H C Z#
then fo r each
P
If
R i s the
th ere i s a sequent
m e R and n u ll otherw ise#
[0,m]
the mapping vj* : 8E
i.e .
fo r each X e A
A v a lid sequent i s
^ set
E
II[m] U Z[m]
(resp*[m , n - 1 ] )
and
s a tis fie s
th ere e x i s t s
In
then we denote
i s sa id to s a t i s f y th e sequent
a € n[m]
{vp^j^ ^ A*
is
m e E,
Gcmplement o f an in t e r v a l o f
|p|^
n = 2*
o f a sequent II i s d efin ed in th e sameway as
IIZ , whose
denoted by
th a t
II
if
II in th e sen se
a and
m such th a t
vjj^(a) = m .
one which i s s a t i s f i e d l y every monotone fa m ily
M o f sequents i s sim u ltan éoualy s a t i s f i a b l e i f th ere
e x i s t s a monotone fa m ily
(v^}^ ^ ^
which s a t i s f i e s every
II e M .
As in S e c tio n 1 v/e have a p r e c is e v e r sio n o f th e p r o p o sitio n ( * ) ,
as fo llo w s :
- 19 -
LhMïIâ 7*
P
be any t r u t h - f im c t lo n o f
m be any t r u t h - v a l u e .
nj
(i e
arg u m en ts and l e t
Then th e r e e x i s t f a m ili e s o f s e ts
j = 1 ,...,r )
such t h a t each rJ"
r
B.j ( i € l ( + ) ;
i s th e complement of
j = 1 ,...,r ) ,
an I n t e r v a l o f
E,
and su ch
th a t
(9 )
P (x i , . . . , X r ) ^ m
A [x f R^ V . . .
ifl(-)
V
x < R ^],
( 10) P ( x i , . . , , x p ) ^ m
A [x f Rl V . . .
ifl(+ )
V
X e R^] ,
We can suppose th e number of con.iuncts
) r e s p . 5 (+ J to be a t m ost
[&(n'' + i ) ] , and t h i s bound i s b e s t p o s s ib l e .
P roof#
imy s u b se t
[•g’(n‘"+ 1 ) ]
S of
C a r te s ia n p ro d u c ts o f s u b in te r v a ls o f
even th e n
E*"
and i f
is odd th e n
n
can be e x p re ss e d a s th e u n io n o f a t m ost
i s th e sum o f
E.
tv/o—elem ent p ro d u c ts
i s th e sum o f [^(n'^+ 1 ) ]
is
of i n t e r v a l s ,
i n e i t h e r case
one— o r two—elem ent p ro d u c ts o f i n t e r v a l s ;
we o b ta in th e d e s ir e d r e p r e s e n ta tio n o f
of
n
E*^ i s th e sum o f ' ^{rf - I ) two—elem ent p ro d u c ts
of i n t e r v a l s to g e th e r w ith a sinj^le o n e-elem en t s e t ;
E**
In d eed i f
S
by form ing th e i n t e r s e c t i o n s
S w ith each o f th e s e o n e -jo r tw o -elem en t p ro d u c ts o f i n t e r v a l s ,
s in c e each such i n t e r s e c t i o n i s o b v io u sly a p ro d u c t of i n t e r v a l s .
The f i r s t p a r t of th e Lemma nov/ fo llo v /s by an a p p l ic a t io n o f t h i s
rem ark to th e secs
S = { ( x i , . . . , X r ) € E^ ;
S = { ( x i , . , . , X r ) € E*" ;
hand th e s e t
[4 (rJ + 1 )]
S = [( m i,...,m r ) :
r e s p e c tiv e ly #
%% + . . . + mp ^ 0 (mod 2 )j
and
On th e o th e r
has
elem ents b u t in c lu d e s no C a r te s ia n p ro d u c t o f i n t e r v a l s
w hich h a s more th a n one
G&(n^ + 1 )]
P ( x i ,.# .,% r ) <
p ( x i , . . . , X r ) > mj
e lem en t;
is b e s t p o s s ib le .
from t h i s we deduce t h a t th e bound
We n o te t h a t on ly in th e case n = 2
- 20 -
does
t h i s b o u id c o in c id e w ith th e bound
L et
P
o b ta in e d i n Lemma 1©
be any tr u th ^ f u n c tio n o f r = r ( P )
be any t r u t h —value*
If
argum ents and l e t
m
s.re any fo rm u la s , th e n th e seq u en t
• • •
w i l l be d en o ted Ty IT{~ ( a i , . . . , « r )
IIL
IP
if
i C l(-)
o r by
i f l( + ) *
Ey an alo g y w ith G entzen*s c a lc u lu s LJ, we a r e le d to c o n s id e r ,
f o r each
P
and
m, in tr o d u c tio n r u l e s o f th e form
(F,m )~
II
II r
( a i,...,a r )
(i f l(-))
il fP (a i , * • • ,ttr ) I m
(F,m )*
II
n I*" ( g % , . . , , a r )
(i g l(+ ))
II |P (a i,* * » ,& r)lm
The a p p l i c a t i o n of th e r u l e (P,m )* i s r e s t r i c t e d to c a s e s where
(11)
1I[0] ^ I I [ 1 ] 2
We a ls o add a r u l e
in fe r
li *•
D i i[ n - 1 ] .
p e rm ittin g W eakening:
If
II C II ' , th e n from
II
The p ro v a b le s e q u e n ts a r e th o s e o b ta in a b le by i t e r a t e d
a p p lic a tio n of th e s e r u l e s to fu n d am en tal s e q u e n ts, i . e . , se q u e n ts
II
such t h a t
n
n[m]
m eE
/
^
»
We n o te t h a t th e r u l e s (P ,n —1 )"" and (P ,0 )*
c o n c lu s io n s a r e
THEOREM 8 .
P roof#
may be o m itte d s in c e t h e i r
alw ays fu n d a m e n ta l s e q u e n ts .
E very p ro v a b le se q u e n t i s v a l i d .
E v id e n tly e v e iy fun d am en tal se q u e n t i s v a l i d , and an y seq u e n t
o b ta in a b le from a v a l i d se q u e n t
by W eakening i s v a l i d .
- 21 -
Hence i t
s u f f ic e s to show t h a t th e in tr o d u c tio n r u l e s
(P,m )
and
(P,m)*^
p re s e rv e v a l i d i t y .
L et
^ ^
be a n a r b i t r a r y monotone f a m ily , and suppose
th a t
s a t i s f i e s th e p rem isses o f (P,m)*”#
s a tis fy
n,
f o r each
i e l ( - ) , and so by (9 )
th e n
s a tis fie s
If
th e seq u en t
v^
does
not
Hi
F ( v ^ ( a i ) , . , , , v * ( a r )) < m ;
we r e c a l l t h a t
( 12 )
hence v/e
v ? ( F ( a i , . . . , a r ) ) = i n f I '( v * ( « i ) , . . . ) V * ( a r ) ) ;
have
( f (« i , . . . ,ttr ) ) ^ m
so t h a t
s a tis fie s
th a t i f
s a tis fie s
,
|P (a i," * # ,% r)lm
♦ Thus we have proved
th e p rem isses of th e r u l e (P,m )
s a t i s f i e s th e c o n c lu s io n .
th e n i t a l s o
We see th e r e f o r e t h a t th e r u l e p r e s e rv e s
v a lid i t y *
Suppose now t h a t th e p rem ises o f th e r u l e (F,m )*
by a monotone fa m ily
If
v^
^
does noc s a t i s f y
( 13 )
v ^ (a )
II,
f o r each
p ^ A,
A be any elem ent at
A.
then by v ir tu e of th e in e q u a lity
^ v*(oc)
and th e r e s t r i c t i o n ( I I ) on
f o r any
L et
a re s a tis fie d
whenever
II,
A ^ /i ,
we see t h a t
Hence f o r a l l
^ ^ A,
i ( l ( + ) , an d so by (IO )
- 22 -
v*
does n o t s a t i s f y
v* s a t i s f i e s
II
lit** (a i;* * * ;K r)
by ( 12 ) i t fo llo w s t h a t
so t h a t
V*
s a tis fie s
|F ( a i , . . . , a r ) l m * *
th e r u le (P,m )^
i s s a t i s f i e d by
i s s a t i s f i e d by
î''^x^A € A *
Thus
th e c o n c lu s io n of
fo r a rb itra ry
A e A,
and
so i t
have proved th e r e f o r e t h a t i f
a monotone fa m ily s a t i s f i e s th e p re m is se s o f th e r u le (F,m )^ th e n i t
a l s o s a t i s f i e s th e c o n c lu s io n .
Thus th e r u le p re s e rv e s v a l i d i t y ,
and t h i s com pletes tlie proof*
We n o te t h a t th e o n ly p ro p e rty o f
th e p a r t i a l o rd e r
^
w hich was used
i n t h i s p ro o f i s r e f l e x i v i t y ;
t h i s p ro p e rty however i s e s s e n tia l *
TIE OREM 9»
Every v a l i d seq u e n t i s p ro v a b le .
P roof*
If
n
i s an u n p ro v ab le seq u e n t th e n th e r e e x i s t s an im provable
seq u en t
Q*
such tlia t
(14)
0 &n*
and such t h a t f o r
(15)
if
,
each c o n n e c tiv e
P and each tr u t h - v a l u e
m,
|P(ai ,.. .,a p ) | nj~ Ç n*,-then scmelli (ai ,* ..,a r ) Ç fl’’* •
This may be seen-as follows;
ifK ^ i
^
i € l(~ )
th e n because
such t h a t
|p ( a i , * . . , a r ) | in” C 0* ;
* ..
i n a seq u en t
If
Q
i s im p ro v ab le , th e r e e x i s t s
Q II f ’( a i , * . . , a p ) = Q
th e same argum ent t o
n,
Q
Q * w ith r e s p e c t
i s u n p ro v a b le ;
nowa p p ly
t o a d i f f e r e n t seq u en t
c o n tin u in g i n t h i s way we o b ta in a sequence
w hich must te rm in a te a f t e r a f i n i t e number o f s te p s
0*
w ith th e r e q u ir e d p r o p e r ti e s ( I 4 ) and (1$)*
i s a n u n p ro v a b le se q u e n t and
th e r e e x i s t s a n u n provable s e q u e n t
- 23 -
| P( « i »
such t h a t
m”*" C 0 ,
th e n
(16)
i f |o |^
th e n
Qa,
|a |“
(a f S, « f E ) ,
and suiih tîja t
( 17 )
C
f o r some
To see t h i s we argue as fo llo w s;
p la c e i s
and
0 [o ] A . . . A n[&]
I I |P ( c f i , . . . , a r ) l
unprovable;
see th a t
-6 c E ;
i t fo llo w s t h a t
b u t th en si.nee II
II II i^ ( a i, . • • ,ap )
sequent
Let II be th e sequent whose
f o r each
C fi
i e l(+) .
sin c e
Q i s unprovable
I I |F ( a i , . . . , a p ) | m*" i s
s a t i s f i e s the r e s t r i c t i o n ( I I ) , we
i s unprovable f o r some
= II II { ^ ( « i . . , a r )
i c l(+ );
has the re q u ire d
th e
p r o p e rtie s
(16) and ( 17 ) .
Let
II
be a n u n p ro v ab le s e q u e n t.
and a mapping
seq u e n t
A "*■ 11^ which a s s o c ia t e s w ith e a c h node
II. ©
The c o n s tr u c tio n p ro c e ed s by l e v e l s ;
wep la c e a s in g le node
l e v e l and
(J = /j(F,m )
We c o n s tr u c t a " tr e e "
Ao
w ith
|F ( a i , . . . , a r ) | ni** C Ij^
a t th e (k+1
IL = ll* ;
Ao
if
li^
A an u n p ro v ab le
a t th e
0^^ l e v e l
A i s a t th e
th e n we co n n ect
l e v e l and s e t
A
A w ith a
=
node
•
The s e t A
i s p a r t i a l l y o rd e re d in th e obvious way*
By (1A) and ( I 6 )
(1 8 )
No
if
ja ln T
we see t h a t f o r a l l
^
th e n
a e S,
U ln T C
m e E
w henever
i s fu n d am en tal and so i t i s p o s s ib l e , f o r each
to d e fin e
v ^ (a )
Ïv ^ Îa ^ A
a s th e l e a s t rtr such t h a t
monotone
if
T h is h o ld s f o r
% i,...,K r
a e n^[m ]
a ll
a / II^[m ].
m e E,
The fa m ily
th e n
ae S
v ^ (a ) / m
a e V by c o n s tr u c tio n .
and c o n s id e r
a e V,
in view o f (1 8 ) .
We s h a l l prove t h a t f o r
( 19 )
A ^ A*.
(fo ra l l
Suppose ( 19 ) h o ld s f o r
a « P ( c t i ,... , c t r ) *
— 24" ~
A e A ).
If
a c Ii^[m]
th e n e i t h e r
|a I m G
or
|a|m ^ C
I n th e f i r s t c a s e we have by (18)
I ^(*1 >• *• #«r ) I m ^
Hence by ( I 5 ) , f o r a l l
sane
i «■ l ( - ) .
/Li
fo r a l l
^ A we have
/i ^ A*
^
fo r
Thus by in d u c tiv e h y p o th e s is we have f o r each
^
jii ^ A
( * r ) / RH*
We deduce l y ( 9 ) t h a t f o r each
/i ^ A
F ( v* ( % i v ^ ( a r ) )
> m
.
> m
•
Thus by (12) we have
v j ( p ( a i , . , . , a r ))
In th e second
s u ita b le
case
|P ( a i , ♦. • ,Or ) | m*' C
so by (1 ? ) we have f o r
/u ^ A
II
) C
11^f o r some
i e l(+ ) .
Thus by in d u c tiv e h y p o th e sis
V
[ t * ( o i ) / E i . . . . . y * (« r ) / EH .
!(!(+ ) ^
''
Hence by ( 10 ) we
have
) , * '* , v * ( a r ) ) < m,
and so by (12)
In e i t h e r c a se we have
v jj(a) 7^ m,
and t h i s co m p letes th e p ro o f of
(1 9 ).
-
25
-
If
and
n
me
v/ere v a l i d , th e n
E
would
be v a l id ;
hence f o r some a e S
we would have
v ^ ( a ) = m and
w hich c o n tr a d ic t s (19)*
a € I^ [m ]
,
We see th e r e f o r e t h a t e v ery u n p ro v ab le seq u e n t
i s i n v a l i d , w hich was to be shown*
Combining Theorems 8 and 9 we o b ta in
THEOREM 10*
A se q u e n t i s v a l i d i f and onlv i f i t i s p ro v a b le .
As a consequence we may deduce th e fo llo w in g an alo g u e of G e n tz e n 's
H au p b sa tz fo r h i s system LJ ;
L et
Z | a |^
II
and
Z
be s e q u e n ts and suppose
a r e p ro v a b le s e q u e n ts . th e n
&> m*
^
l i j a and
IIZ i s a p ro v a b le s e q u e n t.
T h is could a l s o be e s ta b lis h e d p ro o f—th e o r e t i c a l l y in th e manner of
G entzen [4-]*
\7e a l s o n o te w ith o u t p ro o f t h a t th e i n t u i t i o n i s t i c an alo g u e o f
Theorem 3 i s tru e #
Indeed i t can be shovm t h a t a seq u e n t i s
sim u lta n e o u s ly s a t i s f i a b l e i f and on ly i f i t i s sim u lta n e o u s ly
s a t i s f i a b l e in th e c l a s s i c a l sense#
To d e term in e th e in tr o d u c tio n r u le s f o r a g iv e n c o n n e c tiv e
we have to o b ta in s u ita b le r e l a t i o n s o f th e form
c o rre sp o n d in g t r u t h —fu n c tio n #
In view
and
ru le s
(9 ) and (1 0 ) f o r th e
o f Lemma 7 th e number o f
prem isses can alw ays be lim ite d to [i'(n*"+ 1 )]#
th e r e a r e
E,
For eac h c o n n ec tiv e
F
2(n—1 ) r u l e s i f we a g re e t o ex clu d e th e vacuous r u l e s (P,0)***
(F ,n —1 )”*.
(F ,0 )
The r u l e s
and
(F ,n —1 )
(F ,0 )" ’ and
(F ,n —1
a r e th e
same a s th e
f o r th e c l a s s i c a l seq u e n t c a lc u lu s *
an example v/e c o n s id e r th e th re e -v a lu e d L ukasiew icz c o n n e c tiv e s
— 26 —
As
C,K,A,N
in tro d u c e d i n S e c tio n 1 •
In view o f th e above rem arks i t s u f f i c e s
to g iv e th e r u l e s
and
(P ,1 )
o m ittin g th e p a ra m e te r II,
/9|/?|
( P ,1 ) * ;
w r itt e n i n s k e le to n form ,
th e s e a r e a s fo llo w s :
|a
U la
a \ cl^ \
Co/9 ICc^l
|Cct/9| Ca/9
a,/9 1«,/9|
|a |a
|/?|/9
Ka/9 iKb^l
IKc^ I Ko/9
a a
^ l/? l
|a#/?l
Ao/5 \ho0\
•.a
a
a
Na I Na I
| Na | Na
Suppose we s in g le o u t a s u b s e t
where
D=[mçE;
m ^m ol
D o f d e s ig n a te d t r u t h —v a lu e s ,
f o r some
nvj € E*
[vp^i^ ^ ^ may be s a id to s a t i s f y th e fo rm u la
v * (a ) e D;
fam ily»
a
i s s a id to be v a lid
a
A monotone fa m ily
i f f o r each
A € A
i f i t i s s a t i s f i e d by every monotone
The s e t o f v a l i d fo rm u las can be c h a r a c te r iz e d s y n t a c t i c a l l y ;
in d eed Theorem 10 im p lie s t h a t th e fo rm u la
th e seq u e n t
a
| a |p
a
i s v a l i d i f and o n ly i f
i s p rovable#
I f s u ita b le c o n n e c tiv e s
D,
a r e d e f in a b le i n term s o f
th e p r im itiv e c o n n e c tiv e s , th e n u s in g th e above rem ark we can c h a r a c te r iz e
th e s e t o f v a lid fo rm u las by means o f axioms and r u l e s o f in f e r e n c e ,
u s in g a s im ila r
p ro ced u re t o t h a t u sed i n p ro v in g Theorem 5*
We s h a l l
c o n te n t o u rs e lv e s however w ith an a p p lic a ti o n t o th e o rd in a ry (tw o -v a lu e d )
- 27 -
i n t u i t i o n i s t i c p r e p o s itio n a l c a lc u lu s .
tr u t h - f u n c tio n s
Fq , Fj., • , . ,
For each system o f tr/o—v alu ed
w hich in c lu d e s im p lic a tio n ^ D,
we show
hovf to a x io m a tize th e c o rre sp o n d in g i n t u i t i o n i s t i c p r e p o s i tio n a l c a lc u lu s .
The method i s v e ry s im ila r to t h a t u sed i n p ro v in g Theorem 6 , and we
s h a l l u se th e n o ta tio n in tro d u c e d i n c o n n e c tio n w ith t h a t theorem .
We o bserve t h a t a s i n th e c l a s s i c a l c ase we may r e g a rd th e symbols
r o ,...,r n _ i
a p p e a rin g in th e seq u en t ( l ) a s d e n o tin g sequences o f
fo rm u las r a t h e r th an s e t s ;
th e r e s u l t s o f t h i s S e c tio n rem ain tim e
i f we add r u l e s p e rm ittin g p e rm u ta tio n , w eakening and c o n tr a c ti o n .
The n o tio n o f seq u en t f o r th e two—v alu ed i n t u i t i o n i s t i c p r e p o s iti o n a l
c a lc u lu s
r u le s
is
th e
(F ,0 )
and
F o ,F i,,.,
same a s i n th e c l a s s i c a l c a s e .
( F ,l ) ^
f o r a g iv e n c o n n e c tiv e
a r e i d e n t i c a l w ith th e r u l e s
The a p p lic a tio n o f th e r u l e
sequence
A
i s empty.
R
L and
The in tr o d u c tio n
F from th e system
R re s p e c tiv e ly .
i s r e s t r i c t e d to c a s e s w here th e
The a x io m a tiz a tio n o f th e i n t u i t i o n i s t i c
p r e p o s itio n a l c a lc u lu s d i f f e r s from t h a t o f th e c l a s s i c a l p r e p o s i tio n a l
c a lc u lu s on ly in t h a t th e axiom schemes
in s ta n c e s
R ^(y)
a re re p la c e d by t h e i r
R p (F (a i, . . . ,a p ))> o r e q u iv a le n tly by th e schemes
Rp •
* F ( # i , , • , ,0Cp ) ZD#
,,,
Zjij * F ( oc^ , , , , ,o(p ) Z) F ( oci , , , , ,cxp )
In p re p a r a tio n f o r th e p ro o f o f Theorem 11, we observe t h a t , f o r any
tr u t h - f u n c t i o n
F
of
r
argum ents, th e fo rm u la
F ( a i,,.,,a p )
is
i n t u i w i o n i s t i c a l l y e q u iv a le n t to th e c o n ju n c tio n o f th e fo rm u las
i j t l “J
such t h a t
means
i
= (ii,.,,,ip ) e
“J
F“^ ( o ) .
T h is can e a s i l y be deduced by
o f (12) from th e f u l l c o n ju n c tiv e norm al form f o r
- 28 -
F :
P ( x i,.,.,x r )
=
A [x i
p -i(o )
u s in g th e f a c t t h a t th e fo llo w in g
famiOy
(a v /9 )
THEOREM 11*
... V
X p (^ ^ ]
,
i d e n t i t i e s h o ld f o r each monotone
=
v ^ (a )
A
v*(/9)
,
=
v ^ (a )
v
v^(/9)
.
A form ula i s v a l i d i f and on ly i f i t i s d e riv a b le by means
o f modus ponens from th e axiom schemes
If
Q
A1, A2,
i s fu n d a m e n ta l, th e n
fican be i n f e r r e d from p re m isse s
th a n
s in c e th e fo rm u la
*
Qi
$
...
y D.
( y ) , Rp , Lp ( y ) , Rp ,
i s d e r iv a b le f o r any
Suppose
R;
V
^ ^ :
V* (a ^
Proof*
^
D* Qk y
y*
by some r u l e o th e r
DO
*
y
*
*
Oi y ,...,O k y
*
th e n th e same i s tr u e o f 0 y .
i s d e r iv a b le , i t fo llo w s t h a t i f
a r e d e r iv a b le f o r
a rb itra ry
Now suppose t h a t
y,
in f e r r e d from p rem ises
Q i
,
b y
r = y i , • • • fYm ^nd r e c a l l t h a t
a r e d e r iv a b le f o r a r b i t r a r y
Yi T).
means o f ru ü e
A m ust be empty;
y,
R;
if
le t
*
♦
0% y , . . . , 0 ^ Y
th e n th e fo rm u las
. . . D .y mZ) Z k P (# i >• • •
)
(R ~ 1 , . • • , r )
a re d e r iv a b le , and so th e r e f o r e i s
Yi
• • • ^*Ym ^ P(%i*«**f%r) >
t h i s im p lie s t h a t th e form ula
n*y
=
yi D.
i s d e riv a b le f o r a r b i t r a r y
fo llo w s t h a t i f
Q
• • • D.ym ^ ( p ( a i , . . . , a r ) ^ y ) ^ Y
y*
Q
Prom th e above c o n s id e r a tio n s , i t
i s a v a l i d s e q u e n t, th e n th e fo rm u la
- 29 -
0 *y
is
is
d e r iv a b le f o r any
y .
As i n th e p ro o f o f
Theorem 6 ,
we deduce t h a t ev ery v a l i d fo rm u la i s d e riv a b le #
i ’o com plete th e p ro o f o f Theorem 6 , i t i s only
n e c e s s a ry t o prove t h a t th e axiom schemes
I^ (y ) and
a re
( i n t u i t i o n i s t i c a l l y ) v a lid #
F or each
r-tu p le
i = ( lij...,ir ) €
(a j D y )
L et
a
if
and each
j = 1 ,...,r , le t
= 0
ij
be th e c o n ju n c tio n o f a l l fo rm u las
A
lj±=1 “J
such t h a t
V
ij=rO
“J
i = ( i i , . . . , i r ) f F~^(o)#
In H e y tin g 's p r e p o s i tio n a l
c a lc u lu s Y/e have
(21)
. . . 348^ 3 y )
^
i f ET
For any
1
t" Y •
we have
A
aj . 3 . y
a j I- ^
' D.
... 3 . ^
3 Y
,
lj„ o
and so
a |”
•^,,.(^1
i e F "^ (0 )
...D * /9 r
•
By d e f i n i t i o n we have
n r Y ,....i^ Y
I-
. . . ^ . / î^ ^ y )
H ence, u s in g ( 2 1 ) , we deduce
n i y , . . . J I * y , a |- y
S in c e
a
i s i n t u i t ! o n l s t i c a l l y e q u iv a le n t to
fo llo w s t h a t th e axiom scheme
I^ ( y )
_ 30 _
i s v a lid #
P (a i, . . . , a r ),
it
.
Now l e t u s ta k e
th e n f o r some
j
y = % in (2 0 ).
e ith e r
ij = 1
and
If
i e
ij = 0
and
or ij = 0
i* e P “^ ( o ) ,
and i j = 1,
so t h a t
from t h i s we deduce
1“
^Y )
•
;^y d e f i n i t i o n we have
2x Y
f ^ Y
if
A
(/9Z5*
P “^ (0 ) ^
• • • ! > • /5^ Z5 y )
r
•
Hence, u s in g (21) we deduce
Zi y , . . . ,
S in ce
y= a
fo llo w s t h a t
t-y
.
i s i n t u i t i o n i s t ic a l l y e q u iv a le n t t o
th e axiom
t h a t th e a x io m a tiz a tio n s h a re s w ith
H e y tin g 's p r e p o s itio n a l c a lc u lu s th e p ro p e rty :
a
it
scheme Rpi s v a l i d .
I t fo llo w s from Theorem 11
fo rm u la
F ( a i , • . . ,« r )^
f o r e v e ry d e riv a b le
th e r e i s a d e r iv a tio n w hich c o n ta in s , b e s id e s im p lic a tio n ,
o n ly th e c o n n e c tiv e s a p p e a rin g in
a x io m a tiz a tio n of th e
a.
The same p ro p e rty h o ld s f o r th e
c l a s s i c a l p r e p o s iti o n a l c a lc u lu s g iv e n in
Theorem 6 , a s i t does a ls o f o r H e n k in 's a x io m a tiz a tio n [ 6 ] ,
- 31 -
We conclude t h i s C hapter w ith a rem ark on th e re ia tio n c b i-p betw een
th e seq u en t c a l c u l i f o r c l a s s i c a l and i n t u i t i o n i s t i c
n—v a lu ed
p r e p o s itio n a l c a lc u lu s #
The p r i n c i p a l d if f e r e n c e betw een th e c a l c u l i o f S e c tio n s 1 and 2
l i e s i n th e r e s t r i c t i o n w hich i s p la c e d on th e
S e c tio n 2#
c la s s o f se q u e n ts i n
However, i f we p la c e th e same r e s t r i c t i o n on seq u e n ts
in S e c tio n 1
th e n th e r e l a t i o n s h i p becomes much c lo s e r#
th e in tr o d u c tio n r u l e s
(p,m )
and
c h a r a c te r iz e th e v a l i d s e q u e n ts ;
(P,m )*
Indeed
se rv e in b o th c a se s t o
f o r th e c l a s s i c a l
n—v a lu e d
p r e p o s itio n a l c a lc u lu s no l i m i t a t i o n i s p la c e d on th e a p p l ic a t io n o f
th e r u le
(F ,m )*,
w h ile f o r th e i n t u i t i o n i s t i c
n -v a lu e d p r e p o s itio n a l
c a lc u lu s th e a p p lic a tio n o f t h i s r u l e i s lim ite d to c a s e s v h e re (1 1 ) hold s#
F o r 'the i n 't u i t i o n i s t i c c ase t h i s rem ark i s c o n ta in e d i n Theorem 10, v ih ile
f o r th e c l a s s i c a l c a se we need on ly m odify s l i g h t l y th e
In the c a s e
n = 2 , th e s e c h a r a c te r iz a ti o n s o f th e s e t
p ro o f of Theorem 2,
o f v a l i d se q u e n ts
d i f f e r v e ry l i t t l e from th e c h a r a c te r i z a ti o n s w hich G entzen g av e, i n term s
o f h is c a l c u l i IK
and LJ.
Thus we have some i n s i g h t i n t o th e r a th e r
s u r p r is in g r e l a t i o n s h i p w hich e x i s t s be-Ween th e s e two c a l c u l i o f
Gentzen#
- 32 -
C hapter I I ;
A lg e b ra ic Methods
I n t h i s C hapter we stu d y th e r e p r e s e n ta tio n th e o ry of P o s t
a lg e b r a s and pseudo—P o s t a lg e b r a s , and a p p ly i t to o b ta in
a x io m a tiz a tio n s o f c l a s s i c a l and i n t u i t i o n i s t i c n -v a lu e d p r e p o s itio n a l
c a lc u li*
In S e c tio n 1 we in tr o d u c e th e P o st a lg e b r a s and p seu d o -P o st
a lg e b ra s *
P o s t a lg e b r a s w ere f i r s t d e fin e d by Eosenbloom [ 1 5 ] , and
have been s tu d ie d i n r e c e n t y e a rs by E p s te in [ 3 ] and T raczyk [ 2 9 ,30]*
Prom t h e i r work i t fo llo w s t h a t a d i s t r i b u t i v e l a t t i c e w ith
a P o s t a lg e b ra i f and
and a f i n i t e chain*
0,1
is
o n ly i f i t i s th e c o p ro d u ct of a Boolean a lg e b ra
S im ila r ly a d i s t r i b u t i v e l a t t i c e w ith
0,1
w i l l be c a ll e d a pseudo—P o s t a lg e b r a i f i t i s th e co p ro d u ct o f
a pseudo-B oolean a lg e b ra ( i . e . , a r e l a t i v e l y pseudo-com plem ented
l a t t i c e ) and a f i n i t e chain*
A fte r some in tr o d u c to r y rem arks on d i s t r i b u t i v e l a t t i c e s w ith
0 ,1 ,
we d e f in e c o p ro d u c ts i n th e u s u a l c a t e g o r i c a l way an d d e riv e t h e i r
e x is te n c e and u n iq u e n ess from g e n e ra l r e s u l t s i n c a te g o ry th e o ry *
Next we d e fin e P o s t a lg e b r a s and
t h e i r a lg e b r a ic s t r u c t u r e ;
o f o rd e r
n
p seu d o -P o st a lg e b r a s and in v e s t i g a t e
th u s we show t h a t a (pseudo—) P o s t a lg e b ra
may be embedded in th e (n —1 )—fo l d C a r te s ia n power of scane
(pseudo—) Boolean a lg e b r a , and we show t h a t each (p se u d o -) P o s t a lg e b r a
h as th e s t r u c t u r e o f a pseudo-B oolean a lg e b ra *
We th e n g iv e an
e q u a tio n a l c h a r a c te r iz a ti o n o f P o s t a lg e b r a s and p seu d o -P o st a lg e b r a s .
F i n a l l y we prove r e p r e s e n ta tio n theorem s d e sig n e d f o r a p p li c a tio n s t o
many—v a lu e d p r e p o s itio n a l c a l c u l i i n S e c tio n 2*
- 35 -
I n S e c tio n 2 we use th e r e p r e s e n ta tio n th e o ry o f S e c tio n 1 to prove
th e co m p leten ess o f s u i t a b l e a x ic x n a tiz a tio n s of c l a s s i c a l and
i n t u i t i o n i s t i c n—v a lu ed p r e p o s itio n a l c a lc u li#
The a x io m a tiz a tio n s
a r e d e sig n e d so t h a t th e c o rre sp o n d in g Idndenbaum a lg e b r a s a r e P o st
a lg e b r a s and p seu d o -P o st a lg e b r a s r e s p e c t i v e l y , and so we e a s i l y
o b ta in com pleteness theorem s from th e r e s u l t s o f S e c tio n 1*
We
co n clu d e th e C hapter w ith some e le m e n ta ry p r o p e r t ie s o f th e c l a s s i c a l
and i n t u i t i o n i s t i c
n -v a lu e d p r e p o s itio n a l c a lc u li#
The a p p lic a tio n o f a lg e b r a ic methods to c l a s s i c a l and
in tu itio n is tic
n—v a lu e d p r e p o s i t i o n a l c a l c u l i i s su g g este d by th e
s u c c e s s f u l u se of th e s e methods in th e two—v a lu e d c a s e by T a r s k i,
McICinsey, R asiow a, S ih o r s k i, e t . a l #
F o r r e f e r e n c e s , s e e Rasiowa
and S ik o r s k i [1 3 ],
1,
P o s t algjebras and p se u d o -P o st a l/? eb ra s
D i s t r i b u t i v e l a t t i c e s w ith
0 .1 ,
Throughout t h i s C h ap ter
l a t t i c e s a r e supposed d i s t r i b u t i v e w ith
0 ,1 ,
a ll
and a l l homomorphisms,
in c lu d in g th e n a t u r a l i n j e c t i o n o f a s u b l a t t i c e i n t o a l a t t i c e , p re s e rv e
th e e le m e n ts
0,1#
A l a t t i c e i s c a l l e d n o n -d e g e n era te i f i t h a s a t
l e a s t two elem ents#
I f th e l a t t i c e
}x € L ; X A a ^ b}
The two—elem ent l a t t i c e i s d e n o ted by 2#
L
i s su c h t h a t f o r any elem en ts
has a g r e a t e s t elem ent
a pseudo-B oolean a lg e b r a ;
o f a r e l a t i v e to
elem ent
a D 0,
b,
th e e lem en t
and i s d en o ted by
d e n o ted by
—a ,
c
c,
a ,b
we say t h a t
th e s e t
L is
i s c a l l e d th e pseudo—complement
a Z> b#
I n p a r t i c u l a r th e
i s c a ll e d th e pseudo—complement o f
- 34 -
a#
I f f o r e v ery elem en t
a e Lth e r e e x i s t s
a ^ a*^
th e n
L
=0
; a v a* = 1
i s s a id to be a Boolean a lg e b r a .
a lg e b r a i s a pseudo-B oolean a lg e b ra w ith
I n t h i s c a se
-a
a D b
We
a’
such t h a t
,
se e t h a t
ev ery B oolean
a D b = a* v b
an d - a = a * .
i s c a l l e d th e complement o f a r e l a t i v e to b ,
i s c a l l e d th e complement o f
The
a n elem en t
and
a*
f o llo w in g theorem was proved by S to n e [28] ;
THBOIlüM 1 •
licit
le t
filte r.
P be a
I
be an i d e a l i n a non—d e g e n e ra te l a t t i c e
If
a two—v a lu e d homomorphism
I and
F a r e d i s j o i n t , th e n th e r e
h :L
2 w hich i s zero on
I
L and
e x is ts
and u n ity on
T h is theorem im p lie s th e fu n d am en tal r e p r e s e n t a t io n theorem f o r l a t t i c e s :
THh'OriEM 2 ,
E very l a t t i c e i s
C o p ro d u cts,
isom orphic t o a l a t t i c e o f s e t s .
The d i r e c t sum o f m odules, t h e f r e e p ro d u c t o f groups
and th e d i s j o i n t u n io n o f
t o p o l o ^ c a l sp a c e s a r e a l l in s ta n c e s o f th e
c a te g o r ic a l n o tio n o f c o p ro d u c t,
w© s h a l l c o n s id e r t h i s n o tio n i n th e
c a te g o ry o f l a t t i c e s and homomorphisms.
If
[D .}.
A A
A
i s any fa m ily o f l a t t i c e s , th e n a l a t t i c e
s a id t o be th e c o p ro d u c t o f t h i s f a m ily
i^ :
D
(a c a )
in to a l a t t i c e
su ch t h a t
D*,
such t h a t w henever
i f th e r e e x i s t homomorphisms
h^ ;
D*
th e r e e x i s t s a u n iq u e homomorphism
h^ = h 0 ip^ f o r each
A e A#
D.
D*
- 35 -
D is
a r e homomorphisms
h : D
D*
F,
The e x is te n c e and b a s ic p r o p e r ti e s o f th e c o p ro d u c t can be deduced
from g e n e r a l r e s u l t s in u n iv e r s a l a lg e b r a and th e th e o ry o f c a te g o r ie s .
THEOREM *>3*
Any fa m ily o f l a t t i c e s h as a c o p ro d u c t, w hich i s u n ique
up to isom orphism ;
th e c o p ro d u ct i s g e n e ra te d by th e u n io n o f th e
im ages o f th e mappings
lp^(A € A ) , and i f th e l a t t i c e s
a re
n o n -d e g e n e ra te th e n th e s e mappings a r e i n j e c t i v e .
P r o o f#
The c a te g o iy o f l a t t i c e s i s an a lg e b r a i c c a te g o ry \\h ic h has
f r e e a lg e b r a s and i s c lo s e d u n d er th e fo rm a tio n o f homomorphic im ag es;
h ence i t h a s c o p ro d u ctsb y a s l i g h t e x te n s io n o f a theorem o f S ik o r s k i [ 2 6 ] .
A l t e r n a t i v e l y th e c a te g o ry i s c lo s e d u n d e r th e fo rm a tio n o f s u b a lg e b ra s ,
iso m o rp h ic images and c a r t e s i a n p ro d u c ts , and hence i t h a s co p ro d u cts
by a -tiieorem o f Schm idt [25]*
The u n iq u e n ess o f th e c o p ro d u c t, and th e f a c t t h a t i t i s g e n e ra te d
by th e u n io n o f th e im ages o f th e mappings
ip^,
can be proved i n any
a lg e b r a ic c a te g o ry .
To pro v e th e i n j e c t i v i t y o f th e mappings
A e A
^Ao ;
a homomorphism
: Dp^
Dp^
t h i s i s p o s s ib le by Theorem 1.
a homomorphism
h : D
Dp^ such t h a t
so t h a t
ip^,
we choose f o r each
hp^
i s th e i d e n t i t y on
Then we know t h a t th e r e e x i s t s
hoip^ ~ ^A
^
S in ce
hp^
i s i n j e c t i v e , so to o i s
1. .
T h is com pletes th e p ro o f ,
Ao
I n view o f th e p re c e d in g Theorem we may alw ays suppose t h a t i f th e
la ttic e s
Dp^ a r e n o n -d e g e n e ra te
o f th e co p ro d u ct
e q u iv a le n t to t h a t
D.
(A e A ),
th e n eac h
Dp^ i s a s u b l a t t i c e
Thus i n t h i s c a s e th e n o tio n o f co p ro d u ct i s
o f f r e e p ro d u c t ( c f . S ik o r s k i [ 2 6 ] ) ,
w0 s h a l l suppose a l l l a t t i c e s n o n -d e g e n e ra te .
- 36 -
In th e s e q u e l
A more c o n c re te s e t —th e o r e t i c a l c o n s tr u c tio n f o r th e co p ro d u ct can be
g iv en as fo llo w s ;
THEOREM 4#
Suppose
(a Ç a ) .
to th e
form
i s isom orp h ic to a
Then th e co p ro d u ct
la ttic e
pr~^ (Ap^)
o f th e
D*
o f s u b s e ts o f
w ith
f D»
la ttic e
Dp^ ( a e A)
o f s u b s e ts o f
i s isom orphic
^ p^ Mp^ g e n e ra te d by s e ts o f th e
(A e A)*
That t h i s c o n s tr u c tio n i s g e n e r a lly a p p lic a b le fo llo w s from Theorem 2*
Theorem A can be deduced v e ry e a s i l y from th e fo llo w in g a lg e b r a ic
c h a r a c te r iz a ti o n which was communicated to th e a u th o r by V /.H o lszty n sk i.
The
p ro o f i s
a s tr a ig h tf o r w a r d m o d if ic a tio n o f th e p ro o f of th e
c o rre sp o n d in g r e s u l t f o r Boolean a lg e b r a s
THEOREM 5*
Ala ttic e
D i s th e
(of# S ik o r s k i [ 27 ]
co p ro d u ct of s u b l a t t i c e s
p . 39%#
Dp^ (a € A)
i f and o n ly i f i t i s g e n e ra te d by t h e i r u n io n and f o r any ch o ice o f
d i s t i n c t in d ic e s
A i,* ..,A m € A
and elem en ts
a ^ ,b r e Dp^
( r = 1 ,# ..,m )
we have
a% A
A am :^ b i v
Vbm
im p lie s
P o st a lg e b r a s and pseudo—P o s t a lg e b r a s .
n elem ents (n ^
ap ^ bp f o r some r ( r = 1 , . . . , m )
L et
D
be a f i n i t e c h a in w ith
2 ) ; we suppose th e s e to be th e e lem en ts
0 — Sq < e^ K « • • K e|^_ 1 — ^
If
E
,
i s an a r b i t r a r y (non—d e g e n e ra te d i s t r i b u t i v e ) l a t t i c e (w ith 0,1 )
th e n we d e n o te by [D]n
Boolean we say t h a t
S im ila r ly i f
P o s t a lg e b ra
th e c o p ro d u ct of
[D]n
i s th e P o s t a lg e b ra
D i s pseudo-B oolean, th e n
o f o rd e r
p seu d o -P o st a lg e b ra b u t
n
D and
over
D#
o f o rd e r
If D is
n
o v er
D.
i s c a l l e d th e p seu d o -
C le a rly e v ery P o s t a lg e b r a i s a
n o t c o n v e rs e ly ,
- 37 “
[D]^
E.
Vfe w i l l show l a t e r on t h a t
th e d e f i n i t i o n o f P o s t a lg e b ra g iv e n h e re i s e q u iv a le n t to th o se
a p p e a rin g i n th e l i t e r a t u r e •
The s tr u c tu r e o f th e l a t t i c e [p]n
Theorem 3#
may be v e ry e a s i l y deduced from
A ccording to t h i s Theorem we may suppose t h a t
a r e sub l a t t i c e s o f
[p]p
and t h a t e v e ry elem en t o f
p o lynom ial in th e elem en ts o f D and
E#
[D]p
D and
E
is a la ttic e
T ransform ing t h i s poly n o m ial
i n t o d is ju n c tiv e norm al form by means o f th e d i s t r i b u t i v e law , we see
t h a t each elem ent of
where
[D]p
d i , , . , , d p ^ i e D.
we may assume t h a t
has a r e p r e s e n t a t i o n
F u r th e r , r e p l a c i n g
d]_ ^
^
x =
dx
by
(d [ * e i )
V^]^d^ ( k = 1 , . , . , n - i ) ,
Thus each elem ent o f
[D]p
h as
a r e p r e s e n ta tio n
(1 )
where
X=
(d i A e t ) ,
d%, . , dp_i f D.
by th e d e f in in g
T his r e p r e s e n t a t i o n i s i n f a c t u n iq u e .
p ro p e rty o f
a (u n iq u e ) homomorphism
i d e n t i t y on
[D ]p,
: [D]p
th e r e e x i s t s f o r each
Dsuch t h a t
Dt
F o r,
i ( i= 1 , • • . ,n-1 )
re d u c e s t o t h e
D and
D l(e k ) ■= |o o ^ ^ r î ^ s e
o p e ra tin g on (8 ) w ith
(k = 0 ,1 ,...,n - l) ;
we o b ta in
jDi(x) = d ^
( i — 1 ,# # # ,n —l ) ,
from which th e a s s e r t i o n fo llo w s im m e d ia te ly .
If
x'
i s a n o th e r elem ent
X* =
th e n
(d [ A e t ) ,
D t(x v x*) = d t V dt* and
so t h a t
X V x'
and
w ith th e r e p r e s e n ta tio n
x a x*
d{ >
> dp-x
Di (x a x ' ) = d t ^ d i* ( i = 1 , # . . , n - l ) ,
have th e r e p r e s e n ta t io n s
- 38 -
X V X» =
[(d t
X A x ’ =
|^ ( d i A d i ’ ) A e i j
( ')
V dt')
A e J
1
r
T h is e s ta b lis h e s
THEQEIEM 6 .
The l a t t i c e
[D]p
i s isom orphic t o th e l a t t i c e o f a l l
fo rm a l e x p re s s io n s (1 ) w ith th e com p o sitio rs d e fin e d by ( 2 ) , o r e q u iv a le n tly
to th e sub l a t t i c e of
th a t
c o n s is tin g o f elem en ts
(d ^ , . . . ,d p _ x )
such
d% ^ ## # ^ dp_ X•
fra c z y k [29] has c h a ra c te r:.z e d P o s t a lg e b r a s a s fo llo w s :
a d is trib u tiv e la ttic e
a Boolean sub l a t t i c e
L w ith
0,1
i s a l o s t a lg e b r a i f f i t has
D and a sub c h a in
E
w ith elem en ts
0 — Oq k, ex K m• 9 K ep_ X — 1
such t h a t ev ery elem ent has a
X=
w ith d x ,* ..,d n _ x f D.
u niq u e r e p r e s e n ta ti o n
X
^ ®l)^
dp_ X
Thus i n view of Theorem 6, our d e f i n i t i o n i s
e q u iv a le n t to th o s e a p p e a rin g
in th e l i t e r a t u r e .
Chang and Horn
[I]
d e fin e a g e n e r a liz e d P o s t a lg e b ra a s th e l a t t i c e of a l l c o n tin u o u s
fu n c tio n s on a t o t a l l y d is c o n n e c te d compact H aUsdorff sp ace to an
a rb itra ry
w ith
0,1
c h a in w ith th e d i s c r e t e to p o lo g y .
I f we c o n s id e r o n ly c h a in s
t h i s can be shown to be e q u iv a le n t t o saying t h a t a l a t t i c e
L
i s a g e n e r a liz e d P o st a lg e b r a i f f i t i s th e co p ro d u ct o f a Boolean a lg e b r a
and an a r b i t r a r y c h a in .
The o p e r a ti ohs D x ,...,D p _ x
d e fin e d in any l a t t i c e
and th e c o n s ta n ts
[D ]p.
We nov/ show t h a t i f
©o ^© i> ♦••^ 6n- 1
[D]p
i s a P o s t a lg e b ra
o r p seu d o -P o st a lg e b r a th e n a pseudo—complement — and a r e l a t i v e p seu d o complement P> a r e
a ls o d e fin e d .
The e x is te n c e o f a pseudo—complement
i n P o s t a lg e b r a s was n o te d by E p s te in [ 3 ] .
- 39 -
THEOREM 7*
E very p seu d o -P o st a lg e b ra [D]p
(3 )
Di (~x) = -D x(x)
(a)
Di ( x D y )
in
D and
Proof#
( i = 1, 0. . , n - l )
=
The o p e ra tio n s i n [D]p
I s a pseudo-B oolean a lg e b r a w ith
[D j(x)
D
,
D j(y )]
1 ,...,n - l) .
(i =
a r e e x te n s io n s o f th e c o rre sp o n d in g o p e ra tio n s
E,
S u b s titu ti n g
have to prove t h a t
y = 0
i n (A)
we o b ta in
(3 );
(A) a c t u a l l y d e fin e s an o p e ra tio n i n
o p e ra tio n a g re e s w ith th e r e l a t i v e pseudo—complements
f in a lly th a t fo r
we th e r e f o r e
a ry
(5 ) z ^ x D y
x ,y ,z <? [D]p
<f=>
in
[D ]p,
th a t th is
D and
E,
and
we have
Z A x ^ y
I f we r e p r e s e n t th e ri^^^ht-hand s id e o f (A) by d^
(i = 1 ,...,n - l) ,
th e n f o r
D i(z ) = d^ ( i = 1 , . . • ,nr-1 ) ,
s in c e
th e elem ent
dx
* =
^ ^ n -i>
(d [
a
e^)
we have
hence ( a ) d e fin e s an o p e ra tio n i n [D]p •
We e a s i l y check t h a t (A) h o ld s f o r x ,y e D
and f o r
x ,y e E ,
so th e
d e fin e d o p e ra tio n a g re e s w ith th e r e l a t i v e pseudo-com plem ents in D and E.
I t rem ains t o check ( 5 ) .
If
z (C X D y ,
th e n f o r each
i = 1 , . • • ,n - 1 ,
D [(z ) ^ D i(x D y )
hence
;
we have
D i(z
and so
D i(x ) D D [(y)
za x ^ y*
A
x ) =: D i(x )
D t(x ) ^
A
C onversely i f
D j(z ) A D j(x ) < D j(y )
so t h a t f o r each
D i(y )
z a x ^ y,
( i = 1,...,n - 1 ),
th e n f o r each
,
j ^ i,
D i(z ) < D j(z ) ^ D j(x ) D D j(y )
;
th u s we have
D i(z ) ^ D i(x D y )
(i = 1 ,...,n - l) ,
- 40 -
j
we have
2 ^ x D y*
frcxa w hich we conclude t h a t
T h is com pletes th e p ro o f
of Theorem 7*
Having chosen th e l a t t i c e s
D i , . . . , D n _ i , 6o, e i , # . . , e n _ i
L = [d ] p
D and
\L ,
V,
L
th e o p e ra tio n s
v,
,
i n a P o st a lg e b r a o r p seu d o -P o st a lg e b ra
a r e u n iq u e ly d e te rm in e d .
pseudo—P o s t a lg e b ra
E,
I t i s c o n v en ie n t t o re g a rd a
a s an a lg eb jraic s t r u c t u r e
Af Z)
f f Dx , # . # , D p_ x
•
I f we a g re e to re g a rd th e one—elem en t a lg e b r a a s a P o s t a lg e b r a a l s o ,
th e n we a r e a b le to g iv e a r a t h e r sim p le e q u a tio n a l c h a r a c te r iz a ti o n
o f P o s t a lg e b ra s and p se u d o -P o st a lg e b ra s *
Such a c h a r a c te r iz a ti o n
was g iv e n i n th e case of P o s t a lg e b r a s by T raczyk [ 3 0 ] .
Note t h a t th e
c l a s s o f pseudo-B oolean a lg e b r a s i s e q u a tio n a lly d e f in a b le (s e e e . g .
[ 13 ] P .1 2 A ).
THEOREMS.
In o rd e r t h a t
L=
^ L , v , A , D , - , D x , . . . ,Dp_ x ,
sh o u ld be a pseudo—P o s t a lg e b r a i t i s n e c e s s a ry and
s u f f i c i e n t t h a t ^ L , v , A , D , —^
th e fo llo w in g i d e n t i t i e s h o ld
be a pseudo-B oolean a lg e b r a and t h a t
( i = 1 ,...,n - l)
:
(6 )
Di (x V y ) =
D t(x ) V D i(y )
(7)
Di (x Ay ) =
D i(x ) A D i(y )
(8 )
Di(xDy)
=
A jfx [D j(x ) D D j(y ) ]
( 9)
D i(-x )
=
- Dx (x )
( 10)
D i(D k (x ))
=
D%(x)
( 11)
D i(e k )
=
jo
(12)
X
=
(k = 1 , . . . , n - l )
o th e r i^ s e
(k = 0 , 1 , . . . , n - l )
(D i(x ) A e i )
- 41 -
I f we add th e i d e n t i t y
( 13 )
D i(x ) V - Dx(x) = 1
we o b ta in th e n e c e s s a ry and s u f f i c i e n t c o n d itio n t h a t
L be a P o s t
a lg e b r a .
P ro o f.
In each c a se th e n e c e s s ity o f th e c o n d itio n i s c l e a r .
p ro ve s u f f ic ie n c y we o b serv e f i r s t t h a t by (IO )
( i = 1 , . . . , n —1 )
mapping
have a common image
Dx : L
D say*
S e ttin g
L,
th e n
a sub c h a in
and
and so by ( I I )
of
L.
a Ae i ^ b v e j
]^(12)
w ith
t h a t a p p ly in g
Di
Theorem 4 ,
is
L
hence
D
x = ej i n (12) and a p p ly in g ( I I ) we see
ep_x = 1
0 5/ 1
th e
x = 1
and
x
if L
th e
a re a l l d i s t i n c t ;
ej
th e coproduct [D]p
g e n e ra te s
L;
weo b ta in
to check t h a t th e o p e ra tio n s
D, —, D x,#..,D n_x
a s th o s e in tro d u c e d i n [D]p ;
b u t th e
in
E
is
if
e^ ^ e j ,
D and
Dj,
i n (1 2 )
th u s
or i > j ,
w ith th e a id of ( 1 1 ) .
of
ej_x ^ ej
i s n o t th e o n e-elem ent a lg e b r a
a ,b e D, th e n e i t h e r
a (C b
th a t
= Oq
Bq = 0 ;
DUE
we o b ta in
is
o r a Boolean s u b l a t t i c e i f (13)
( j = 1 , . * . , n —1 ) ; a ls o s u b s t i t u t i n g
r e s p e c tiv e ly
D[
( 9)
By (6 ) -
D i s a pseudo-B oolean homomorphism ;
a pseudo-B oolean s u b l a t t i c e o f
h o ld s .
th e mappings
To
so
Thus by
E . I t only rem ain s
of
[D]p
L
a re th e same
a r e u n iq u e ly
d eterm in ed by th e re q u ire m e n t t h a t ( 6 ) , ( 7 ) , ( I O) , ( I I ) h o ld , and th e
o p e ra tio n s
( 8 ) , ( 9);
D, — i n [D]p
a r e c h a r a c te r iz e d p r e c i s e l y by th e c o n d itio n s
th u s th e p ro o f i s com plete#
V/e o b serv e t h a t th e u se o f
Theorem 4 co u ld be a v o id ed i n fa v o u r o f Theorem 6#
R e p re s e n ta tio n Theory.
we can c o n s tr u c t new
p a r t i a l l y o rd e re d s e t*
B eginning w ith th e s im p le s t P o st a lg e b ra E = [ 2 ] p ,
p seu d o -P o st a lg e b r a s a s f o llo w s .
C o n sid er -the s e t
- 42 -
E^^^ o f a l l
L et
A be any
f a m ilie s
e A ^
^
( 14 )
which s a t i s f y th e fo llo w in g c o n d itio n f o r a l l
a^ ^ a^
w henever
A*/i e A :
A ^ /i
We d e fin e th e o p e ra tio n s on
V
=
la .^
V
=
{a^ A
=
fin f
W x
r> ^ ) i
)l
=
ei
=
iDi(a^ ,)i
( i — 1,# * . , n—1 )
=
N li
( i — 0 , 1 , # * # , n—1)
U sing Theorem 8 we can show t h a t
a lg e b r a :
E^^^
i s in d e e d a pseudo—P o s t
i t i s on ly n e c e s s a ry to v e r i f y t h a t
E^"^^
i s a pseudo-B oolean
a lg e b ra and t h a t th e i d e n t i t i e s (6 ) — (1 2 ) a r e s a t i s f i e d *
most p a r t th e v e r i f i c a t i o n s a r e t r i v i a l ;
u s e f u l to n o te t h a t
I f we d e n o te by
x)
=
o f elem en ts
E^"^^ =
of
i n p ro v in g (8 ) and (9 ) i t i s
D [(x )
f o r any s u b s e t
2^^^ th e s e t o f a l l f a m ili e s i n
c o n d itio n ( 1 4 ) , th e n we see t h a t
th e P o s t a lg e b r a
If
E^
2^
A
of
E.
w hich s a t i s f y
2^”^^ i s j u s t th e pseudo-B oolean a lg e b r a
E^"^^ i n v a r ia n t u n d er each Di;
[2^‘^ ^]jj*
F or th e
a c c o rd in g ly
A
i s i d i s c r e t e l y o rd e re d th e n
of a l l
E -v a lu e d fu n c tio n s on A,
we may w rite
E^"^^ i s sim ply
w ith th e
o p e ra tio n s d e fin e d p o in t-w ise *
I t i s easy to see t h a t i f
D and
th e n any pseudo-B oolean homomorphism
to a p seu d o -P o st homomorphism
h (x ) =
^
D*
a r e pseudo-B oolean a lg e b r a s ,
^ :
D -»
h : [D]n -»|p*]n>
(D i(x )) e i
—43 —
•
h as a u n ique e x te n s io n
g iv e n by th e e q u a tio n
T his rem ark s im p lif ie s th e p ro o f of th e n e x t theorem w hich in th e
c a se o f P o s t a lg e b ra s i s
w ell-know n.
THEOREM 9*
be an elem ent o f a p seu d o -P o st a lg e b r a
L et a / 1
F o r some p a r t i a l l y o rd e re d s e t A th e r e e x i s t s a homomorphism
such t h a t
h (a )
h : L
such t h a t
E
P r o o f.
L et
1»
If
L
1 i f f some component
a e D.
x ç L
D i(x ) i s d i s t i n c t
from 1 , we
a e D.
0 ( a ) / 1 , o r , i n c a se
0 : D -*• 2
such t h a t
D i s B oolean, a Boolean homomorphism
0 (a ) ^ 1,
The p o s s i b i l i t y o f th e second
c o n s tiu c tio n fo llo w s from th e Boolean prim e i d e a l th e o re m ;
i s c a r r i e d o u t a s fo llo w s .
D,
L et
p a r t i a l l y o rd e re d by in c lu s io n .
^ ^ (x ) =
fo r a l l
p D A, X € p
D.
Thus
y e p ;
p
x
l e t us
j € K
iff
i n one d i r e c t i o n t h i s i s t r i v i a l ;
x D y / A
th e n th e f i l t e r g e n e ra te d by
n o t c o n ta in in g
0 i s a pseudo—Boolean homomorphism.
— A4" —
D -> 2^^ ;
to showing t h a t
i s d i s j o i n t frcan th e i d e a l g e n e ra te d by
ex tended to a prim e f i l t e r
i s th e
•
T h is amounts
im p lie s
I f 0^
A
d e f in e
, A
f o r th e o th e r we n o te t h a t i f
A U [x}
A,
(j> i s o b v io u sly a l a t t i c e homomorphism
prove t h a t i t p re s e rv e s
th e f i r s t
A be th e s e t o f a l l prim e f i l t e r s
c h a r a c t e r i s t i c f u n c tio n o f th e s e t
mapping
Thus
A a pseudo—Boolean homomorphism 0 ;• D -> 2^^^
such t h a t
Ih e
is
A ccording t o th e rem ark made ab o v e, we have o n ly t o
c o n s tr u c t, f o r s u i t a b l e
of th e l a t t i c e
E^^^
h (a ) / 1 .
see t h a t i t i s s u f f i c i e n t to prove th e theorem when
suppose
h : L
i s a P o s t a lg e b r a th e r e e x i s t s a homomorphism
L =[p]n •U sing th e f a c t t h a t an elem en t
d i s t i n c t from
L.
y
y
and so may be
by Theorem 1#
F o r any two d i s t i n c t
e lem en ts o f
D "Üiere e x i s t s a prim e f i l t e r
n o t th e o th e r ;
hence
0
i s one—one
A w hich c o n ta in s one b u t
and so in p a r t i c u l a r
0 (a ) 4 1*
T h is com pletes th e p ro o f .
The above a rg u m e n t. i n f a c t y ie ld s th e fo llo w in g r e p r e s e n ta t io n theorem ,
f i r s t proved i n th e case of P o s t a lg e b r a s by Wade [ 3 l ] :
IHiiiOIffiM 1 0 .
th e form
Every P o s t a lg e b r a can be embedded in a P o s t a lg e b r a o f
E"^.
E very pseudo—
do—P
] o st a lg e b r a can be embedded in a pseudo-r
P o s t a lg e b ra o f th e form
E (A)
U sing known r e p r e s e n ta tio n theorem s f o r Boolean and pseudo—Boolean
a lg e b r a s we can prove r e p r e s e n ta tio n theorem s o f a to p o lo g ic a l c h a r a c te r
f o r P o s t a lg e b r a s and pseudo—P o s t a lg e b r a s .
Such a r e p r e s e n ta tio n
theorem was o b ta in e d by E p s te in [3 ] i n th e
case o f P o s t a lg e b r a s .
Vfe om it th e p ro o fs s in c e we have no need o f such theorem s i n th e s e q u e l.
THEOPuEIvI 1 1 .
Every P o s t a lg e b ra i s iso m o rp h ic to th e P o s t a lg e b r a o f
c o n tin u o u s n-v a lu e d f u n c tio n s on some t o t a l l y d is c o n n e c te d comipact
H au sd o rff sp a c e .
Every n seu d o -P o st a lg e b r a i s iso m o rp h ic to a p seu d o -
P o st a lg e b r a o f low er sem i—con tin u o u s n-v a lu e d fu n c tio n s
on some comyaot
T i- s p a c e .
2.
A p p lic a tio n s to p r o p o s itio n a l c a l c u l i
I n t h i s S e c tio n we c o n s id e r th e p r e p o s it io n a l c a lc u lu s w hich i s
d e term in e d by ta k in g a s p r im itiv e tr u t h - f u n o t io n s th e o p e ra tio n s
V,
*f
o f th e P o s t a lg e b r a
o f th e s in g le elem ent
v a lid i f f
v * (a ) = 1
1,
E.
eo , 6 x , . • • , ep _
The s e t o f d e sig n a te d t r u t h —v a lu e s w i l l c o n s is t
e ^ .^ = 1 .
Thus
f o r every v a lu a tio n
- 45 —
a fo rm u la
t
,
a
is c la s s ic a lly
and i n t u i t ! o n i s t i c a l l y
v a lid i f f
v^(a)=* 1
(A e A)
f o r e v ery monotone fa m ily
^
C le a rly e v e ry i n t u i t i o n i s t i c a l l y v a lid fo rm u la i s c l a s s i c a l l y v a l i d ,
b u t n o t c o n v e rs e ly .
There i s no e s s e n t i a l lo s s of g e n e r a l i t y i n
r e s t r i c t i n g our a t t e n t i o n to th e above system o f t r u t h —fu n c t io n s , s in c e
i t may be shown t h a t a fo rm u la w ith any c o n n e c tiv e s w h a tev e r i s
i n t u i t i o n i s t i c a l l y e q u iv a le n t (a n d , a f o r t i o r i , c l a s s i c a l l y e q u iv a le n t)
to some fo rm u la c o n ta in in g on ly th e
c o n n e c tiv e s
v , At Df etc©
We s h a l l f i r s t g iv e a more a lg e b r a ic fo rm t o th e d e f i n i t i o n s
o f c l a s s i c a l and i n t u i t i o n i s t i c v a l i d i t y .
set
S
o f fo rm u las a s an a lg e b r a
V,
S
D,
1^1 >• • •
1 * ®o >®i >• • • > ® n - i ^
i s i n f a c t th e a b s o lu te ly f r e e a lg e b ra on th e s e t
g e n e r a to r s .
V
Thus we c o n s id e r th e
: V
E
t
V of fre e
There i s a one—one co rresp o n d en ce betw een v a lu a tio n s
and homomorphisms
h ; S -> E
d e term in e d by th e r e l a t i o n
h ( a ) = v * (a )
;
s i m ila r ly th e r e i s a one—one co rresp o n d en ce betw een monotone f a m ili e s
(v ^ )^ ^ ^
and homomorphisms
h ; S -►E^'^^ d e term in ed by th e r e l a t i o n
h(oc) =
^ A
•
Hence th e d e f i n i t i o n s of v a l i d i t y can be r e s t a t e d a s fo llo w s :
(i)
a form ula
h : S -> E
a
c a rrie s
S
i s c l a s s i c a l l y v a l i d I f f each homomorphism
a
i n t o th e u n i t e le m e n t;
(ii)
a fo rm u la
i s i n t u i t i o n i s t i c a l l y v a l i d i f f f o r each p a r t i a l l y o rd e re d s e t
homomorphism
h : 8
E^^^ c a r r i e s
—
a
—
i n t o th e u n i t e le m e n t.
a e S
A
each
U sing th e r e p r e s e n ta tio n th e o iy o f S e c tio n 1 we can c h a r a c te r iz e
c l a s s i c a l and i n t u i t i o n i s t i c v a l i d i t y a s fo llo w s ;
THiiiOEEM 12*
A form ula i s c l a s s i c a l l y (resp * i n t u i t i o n i s t i c a l l y ) v a l i d
i f and o n ly i f i t i s c a r r ie d i n t o th e u n i t elem ent by ev ery homomorphism
from
S
i n t o a P o s t a lg e b r a (resp * pseudo—P o s t a lg e b r a )
P ro o f.
Suppose th e r e e x i s t s a homomorphism
a p seu d o -P o st a lg e b r a
[u]n
e x i s t s a homomorphism
g
such t h a t
from
g (h (a )) / 1#
w ith
f(a )
1,
such t h a t
[u]n
so
a
[u]n
such t h a t
S
in to
% Theorem 9 th e r e
in to some p seu d o -P o st a lg e b ra
i s a homorphism from
S
in to
i s not in tu itio n is tic a lly v a lid .
S im ila r ly i f th e r e e x i s t s a homomorphism
a lg e b r a
from
h (a ) / 1.
Then f = go h
and
h
[D]n*
h (a ) / 1 ,
h
th e n
T his p ro v es th e Theorem i n one d i r e c t i o n ;
from
a
8
in to a P ost
is not c la A c a lly v a lid .
th e o th e r
d ire c tio n i s t r i v i a l .
V/e s h a l l now c h a r a c te r iz e c l a s s i c a l and i n t u i t i o n i s t i c v a l i d i t y
by means o f axioms and r u l e s of in f e r e n c e .
Thus we c o n s id e r th e
fo llo w in g axiom schem es, in which th e e x p re s s io n
a b b r e v ia tio n f o r
th e fo rm u la
(A1)
o
(a D /5 )>
3
Da )
(A2)
a D Os D Y ) 0 . ( a D
(A3)
» 3 Os 3 (« *
(A4-)
(a * /S) D a
(A3)
(a ^ f i ) 0 0
(a
/S))
(a 6 )
a O {a W 0 )
(A7)
/9 D (oc V /?)
(a 8 ) ( a O f ) o ( . ( 0 O r )
(A9)
(A10)
D a)
3 ((a V /9 ) D y ) )
a O (,-aO 0 )
{ a O 0 ) O ((a O - 0 ) O - a )
—47 —
y)
a ®^
:
i s an
(A11
D ;(a
(A12
D l(a A /9 ).S o D i(a ) a D i(^ )
(A13
D i(*
v /9 ).3 .D i(a )
V DiO?)
A jii ( D j ( a ) D D j( ^ ) )
-Di(a)
(A14
(i =
(i
= 1 , # # # , n —1 )
( i,j =
n—1 )
(A15
D i(D j(a ))# a . D j(a)
(A16
D i( e j)
(1 ^ 1 ^ j ^ n -1 )
(A17
-D i(ej)
(O ^ j < i ^ n-1 )
(A18
a . e . V J :J (D i(a ) ^ e i )
D i(a ) V - D i(a )
(A19
We ta k e (A1 ) — (A18)
a s axiom schemes
p r e p o s itio n a l c a lc u lu s , an d (A1) - (A19)
c l a s s i c a l p r e p o s itio n a l c a lc u lu s .
f o r th e i n t u i t i o n i s t i c
a s axiom schemes f o r th e
I n b o th c a s e s th e r u l e s o f in f e r e n c e
a re modus p o n e n s'
a
to g e th e r
a D
w ith th e r u l e
^ n -i (oc)
V/e o bserv e t h a t th e axioms (A1 ) - (AIO)
a r e th e u s u a l axioms
f o r H e y tin g 's p r e p o s itio n a l c a lc u lu s , w h ile axiom s (A11) - (A19)
c o rre sp o n d i n an obvious way to th e e q u a tio n s (6 ) - (1 3 ) of S e c tio n 1*
The p a ssa g e from i n t u i t i o n i s t i c n—v a lu e d lo g ic t o c l a s s i c a l n -v a lu e d l o g i c ,
by th e a d d itio n # f (A19 ) , sh o u ld be compared w ith th e p assag e from
H eyting *s p r e p o s itio n a l c a lc u lu s to th e c l a s s i c a l two—v alu ed p r e p o s it io n a l
c a lc u lu s
th e a d d itio n o f th e law o f ex clu d ed middle*
— 48 —
We now prove th e c o m p leten ess o f Die se a x io m a tiz a tio n s :
THEOREI'd 13*
A fo rm u la i s i n t u i t i o n i s t i c a l l y v a l i d i f f I t i s d e riv a b le
frcan axioms (A1 ) - (A1 8) ;
a form ula i s c l a s s i c a l l y v a lid i f f i t i s
d e r iv a b le frcan axiom s (A1 ) - (A19)*
Proof#
In view o f Theorem 8 , e v e ry p se u d o -P o st a lg e b ra i s a pseudo—
B oolean a lg e b r a
i n w hich th e e q u a tio n s (6 ) - (13) h o ld .
homomorphism from
S
axiom s (A1 ) — (a18)
i n t o a pseudo—P o s t
in to a pseudo—P o st a lg e b r a
i n t o th e u n i t elem ent#
a lg e b ra c a r r i e s
e lem en t, th e n i t a ls o c a r r i e s
i t c a rrie s
th e
a
a
must c a r r y each o f th e
I f a homomorphism from
and
in to th e
a D (3
Hence
S
in t o th e u n i t
u n i t e lem en t;
i n t o th e u n i t e le m e n t, th e n i t must c a r r y
u n i t e le m e n t.
Hence every
s i m ila r ly , i f
D n -i(a )
in to
by Theorem 12 i t fo llo w s t h a t any fo rm u la
d e r iv a b le from (A1 ) - (A18) i s i n t u i t i o n i s t i c a l l y v a lid #
C onsider th e r e l a t i o n
a
and
a ^ /3
/? w henever th e fo rm u la
w hich h o ld s betw een two fo rm u las
(a s /?)
i s d e r iv a b le from (A1 ) — (A 18).
I t i s e a s y t o show t h a t t h i s r e l a t i o n i s a congiruence on
exanç)le, i f
a ^
Dn-i(cc D /9 )
and
h o ld s th e n
Dn_i (/? D a )
t h a t f o r each
i
D i ( a ) '^ D t 0 9 )
(i = 1 ,...,n - l) .
we
th a t
^ D a
a r e d e r iv a b le ;
Di(%) D D[(/9)
b u t th e n by (A13) we see
S in ce t h e r e l a t i o n
8 /^#
a r e d e r iv a b le , so t h a t
a# i s a co n g ru en ce,
The axiom s (A1 ) — (A19) g u a ra n te e
i s a pseudo—P o s t a lg e b r a , i n view o f Theorem 8*
Theorem 12 th e n a t u r a l homomoi^hism
S -> 8 /^
v a lid fo rm u la in to th e u n i t elem ent o f
8/^#
c a r r i e s ev ery i n t u i t i o n i s t i c a l l y ;
From t h i s we i n f e r t h a t ev ery
i n t u i t i o n i s t i c a l l y v a l i d fo rm u la i s d e r iv a b le from ( A1 ) — (A 18).
p ro v es th e
For
a r e d e r iv a b le , so t h a t
and D [(^ ) D D i(« )
may form th e q u o tie n t a lg e b r a
S /^
and
a D^
S.
f i r s t p a r t of our Theorem;
s im ila r#
— 49 "*
T his
th e p ro o f o f th e second p a r t i s
v/e now e s t a b l i s h seme sim ple p r o p e r tie s o f th e c l a s s i c a l and
i n t u i t i o n i s t i c n—v a lu ed p r e p o s i t i o n a l c a lc u li#
a mapping
a -*• a*
F i r s t we o b ta in
o f th e fo rm u la s o f th e n—v a lu e d p r o p o s itio n a l
c a lc u lu s i n t o fo rm u las o f th e two—v a lu ed p r e p o s iti o n a l c a lc u lu s such
th a t
i s c l a s s i c a l l y r e s p . i n t u i t i o n i s t i c a l l y v a lid i f and o n ly
a
if
i s c l a s s i c a l l y re sp # i n t u i t i o n i s t i o a l ] y v a lid ( i n th e o rd in a ry
tw o -v alu ed sen se )#
V/e a rra n g e th e p r e p o s itio n a l v a r i a b l e s o f th e n—v a lu e d p r e p o s iti o n a l
c a lc u lu s i n a sequence
P , %,#**,
p r e p o s itio n a l v a r i a b l e s
and s i m i l a r l y we a rra n g e th e
o f th e two—v a lu e d p r e p o s itio n a l c a lc u lu s i n
a sequence
( 15)
The s e t
Pi,
Sq
•••> P n - i #
Qi
•
of fo rm u la s o f th e tv/o-valued p r o p o s i ti o n a l c a lc u lu s i s
of th e sequence ( 15 ) o f
th e l e a s t s e t w hich c o n ta in s each member
p r e p o s itio n a l v a r ia b le s and
w hich c o n ta in s
-a
and
w henever i t c o n ta in s
V/e d e fin e mappings
a
5 i : S ■* Sq ( i =
ccD /9
1 ,..,,n - l)
and
by in d u ctio n ,
a s fo llo w s ;
& l ( p )
5
l(q)
«
=
P i
A
# , .
A
p i
=
Qi
A
. . .
A
qi
•
•
8 l(a v /9 )
=5 8 1( a ) V 8iC #)
8 i(a A ^)
= 8 1 (a) A 8 i(j9)
8 i(« D j9 )
= A jii( S j(a ) D 8 j(^ ))
8i(-a )
=
~ 81 (a )
8 i( U j( a ) )
=
S j( a )
8 l(®j )
=
I
Q
( j = 1 ,# ..,n - l)
i ^ j
- 50 -
0 ,1 ,# ..,n - l)
Here
and
1
and
0
Pi A —Pi
THEOREM 14®
may be ta k e n to den o te f o r example th e fo rm u las
Pi D pi
re s p e c tiv e ly .
A fo rm u la
a
o f th e n—v alu ed p r o p o s iti o n a l c a lc u lu s i s
c l a s s i c a l l y ( r e s p . i n t u i t i o n i s t i c a l l y ) v a l i d i f and on ly i f th e
co rre sp o n d in g form ula
8 n -i(% ) o f th e two—v a lu e d p r o p o s itio n a l c a lc u lu s
i s c l a s s i c a l l y (resp o i n t u i t i o n i s t i c a l l y ) v a l i d .
P r o o f.
F i r s t we show t h a t i f
B i s any pseudo—B oolean a lg e b r a , th e n
th e r e i s a one-one co rresp o n d en ce betw een homomorphisms
and homomoiphisms
(1 6 )
f ; S -> [B]n >
D i(f(a ))
In d e e ü , i f we a r e
=
g iv e n a
determ ined
by th e i d e n t i t y
(i = 1 ,...,n - l)
h (8 i(a ))
homomorphism
h : Sq -* B
h ; So -> B,
.
th e n we e a s i l y
prove by in d u c tio n t h a t
h (S x (tt)) ^
^ k (8 n -i(o ())
hence th e r e c e r t a i n l y e x i s t s a mapping
5
f ; S -*> [s]n
s a tis fy in g ( l6 ) ,
name]y
f(« )
=
V"-J
h (8 i(a ))e i
;
fu rth e rm o re i t fo llo w s from ( l6 ) t h a t such a mapping i s homomorphic,
C o n v ersely , suppose we a r e
So
g iv e n a homomorphism
f : 8 -* [B]p ;
s in c e
i s th e a b s o lu te ly f r e e a lg e b ra on th e g e n e r a to r s ( 15 ) , th e r e e x i s t s
a homomorphism
h : 8o
B
s a tis fy in g
h ( p i ) = Di f ( p )
(i =
h ( q i) = Di f ( q )
(i
n. * «•
1 ,...,n - l)
= 1 ,..,,n - l)
-
;
by in d u c tio n we e a s i l y v e r i f y t h a t
-
51
h
-
s a t i s f i e s (1 6 ) .
Suppose now t h a t
homomorphism
a e S
h ; So -> B (w here
a homomorphism f : 8
[B]n
f ( a ) = 1 , and so by ( l 6 )
su ch t h a t (16) h o ld s .
5 n - i( a ) i s
F o r any homomorphism
8 n-i(% )
f : 8
[B]n
B i s pseudo—B o o lean ), th e r e e x i s t s a homomorphism
such t h a t ( l é ) h o ld s .
Thus
Thus
Theorem 12
C o n v erse ly , suppose t h a t
in tu itio n is tic a lly v a lid .
a
S ince
F o r any
B i s pseudo—B o o lean ), th e r e e x i s t s
h ( S n - i( a ) ) = 1 .
in tu itio n is tic a lly v a lid .
(where
i s in tu itio n is tic a lly v a lid .
h : So -» B
h ( S n - i ( a ) ) = 1 , i t fo llo w s t h a t
i s i n t u i t i o n i s t i c a l l y v a l i d by Theorem 12.
f(a ) = 1 .
T h is p ro v e s th e p a r t
o f th e Theorem w hich co n cern s i n t u i t i o n i s t i c v a l i d i t y ;
th e o th e r p a r t i s
proved s i m i l a r l y .
Theorem 14 im m ediately g iv e s a s o lu tio n o f th e d e c is io n problem f o r
th e c l a s s i c a l and i n t u i t i o n i s t i c n—v a lu e d p r e p o s itio n a l c a lc u lu s *
As
a n o th e r a p p l i c a t i o n , we e s t a b l i s h an alo g u es o f two w e ll—Icnown theorem s
c o n ce rn in g th e i n t u i t i o n i s t i c (two—v a lu ed ) p r e p o s i tio n a l c a l c u lu s .
(F o r r e f e r e n c e s , s e e Rasiowa and 8 ik o r s k i [ 1 3 ] . )
THEOREM 15 .
If
c a l c u i u s , th e n
a or
a
a,nd ^
a V /9
a r e any fo rm u la s o f th e n-v a lu e d p ro p o s it^ o n a l
i s i n t u i t i o n i s t i c a l l y v a lid i f and o n ly i f e i t h e r
is in tu itio n is tic a lly v a lid .
The form ula
—a
is c la s s ic a lly
v a lid i f and on ly i f i t i s i n t u i t i o n i s t i c a l l y v a l i d .
P ro o f.
If
a V
i s i n t u i t i o n i s t i c a l l y v a l i d , th e n by Theorem 14 th e
form ula
S n ~ i(a ) V 8 n - i = S n _ i(a V /? )(o f th e tw o -v alu ed p r e p o s iti o n a l
c a lc u lu s ) i s i n t u i t i o n i s t i c a l l y v a l i d .
Hence e i t h e r
8 n -i(% )
8p«i(/9)
i s i n t u i t i o n i s t i c a l l y v a l i d , and s o , a g a in u s in g Theorem 1 4 , e i t h e r
is in tu itio n is tic a lly v a lid .
Theorem 14 th e fo rm u la
If
a or
—a i s c l a s s i c a l l y v a l i d , th e n by
- S i ( a ) = S p - i ( —a ) i s c l a s s i c a l l y v a l i d .
- 32 -
Hence
t h i s formula, i s i n t u i t i o n i s t i c a l l y v a l i d , and so
—a
is in tu itio n is tic a lly
v a l i d by Theorem 14»
Our f i n a l r e s u l t co n cern s th o s e fo rm u la s o f th e n -v a lu e d p r e p o s it io n a l
c a lc u lu s w hich a r e a ls o fo rm u la s of th e two—v a lu e d p r e p o s i t i o n a l c a lc u lu s .
Thus l e t
Kp ( r e s p . Jp ) d e n o te th e s e t o f a l l c l a s s i c a l l y (resp *
i n t u i t i o n i s t i c a l l y ) v a lid fo rm u la s o f th e n—v a lu e d p r e p o s it io n a l c a lc u lu s
w hich c o n ta in only th e c o n n e c tiv e s
THEOREM 16.
F o r each
v a l i d fo rm u la s of
Kg , Kq , . . .
n ^ 2,
th e
set
Jp
c o in c id e s w ith th e s e t o f
H eyting *s pro p o s i t i o n a l c a lc u lu s .
The s e t s
form a s t r i c t l y d e c re a s in g c h a in whose f i r s t member i s th e s e t
o f v a lid fo rm u las of th e
Pro o f*
v , * ,1 3 , — *
c l a s s i c a l two—v a lu e d p r e p o s iti o n a l c a lc u lu s ©
The f i r s t a s s e r t i o n fo llo w s from th e f a c t t h a t ev ery pseudo—Boolean
a lg e b r a i s a pseudo-B oolean su b a lg e b ra o f a pseudo—P o s t a lg e b r a o f o rd e r
n,
w h ile , on th e o th e r hand, e v e ry pseudo—P o st a lg e b r a i s i t s e l f pseu d o -B o o lean .
S im ila r ly to show t h a t
Kg D Kg D . . .
each P o s t a lg e b r a o f o rd e r n—1
a lg e b r a o f o rd e r
n.
, i t i s o n ly n e c e s s a ry to o b serv e t h a t
i s a pseudc—Boolean su b a lg e b ra o f a P o st
The s t r i c t n e s s o f th e in c lu s io n s i s o b ta in e d by
c o n s id e rin g th e fo rm u las
Yn =
i t i s e a s y to se e t h a t
V
(pL = P j)
1^ i < j ^ n
(n = 3 , 4 , . . . )
;
Yn ^ Kp-i - Kn (o f* Godel [ 5 ] ) •
We n o te t h a t th e in c lu s io n s rem ain s t r i c t even i f we r e s t r i c t
to fo rm u las c o n ta in in g o n ly im p lic a tio n .
if
a U /?
i s an a b b r e v ia tio n f o r
(a D
F or i f
D /3,
« i j = (p j
P i)
a tte n tio n
and
th e n th e fo llo w in g fo rm u la
( i n w hich th e term s a s s o c ia te to th e l e f t ) i s c l a s s i c a l l y v a l i d i n th e
(n-1 ) -v a lu e d p r e p o s itio n a l c a lc u lu s b u t n o t i n th e n—v a lu e d p r e p o s i t i o n a l
c a lc u lu s :
- 53 -
Yn
— ® i 2 4/ • • • U a 1 p U OC23 V
G-ode3[5] u sed th e f a c t t h a t
• • • U Kgp U
• • • U otp-g n - i ^ (^n-2 n ^ # n - i n
Yn f Kp_i - Kp
t o show t h a t H e y tin g ’ s
p r o p o s itio n a l c a lc u lu s has no f i n i t e c h a r a c t e r i s t i c m a trix ;
u s in g th e f a c t t h a t
Yn * ^ Kp-i - Kp ,
s im ila rly ,
we can v e r i f y a c o n je c tu re o f
P o r t e [ 10 ] , t h a t th e p o s itiv e im p lic a tio n a l p r o p o s itio n a l c a lc u lu s h as
no f i n i t e c h a r a c t e r i s t i c m a trix (s e e ['17])*
- 54 -
C hapter I I I : S h e ff e r F u n c tio n s
I n t h i s C hapter we c h a r a c te r iz e th e S h e ffe r f u n c tio n s o f c l a s s i c a l
n -v a lu e d lo g ic and make a sm a ll b e g in n in g on th e c o rre sp o n d in g problem f o r
in tu itio n is tic lo g ic .
S e c tio n 1 c o n ta in s two r e s u l t s on S h e ff e r f u n c tio n s i n c l a s s i c a l
n -v a lu e d l o g i c .
Theorem 1 s t a t e s t h a t a tr u t h - f u n o tio n
F
i s a S h e ffe r
f u n c tio n in c l a s s i c a l n -v a lu e d lo g ic i f and o n ly i f th e a lg e b r a <E,F>
has no s u b a lg e b ra s , automorphisms of homomorphic images a p a r t from th e
obvious t r i v i a l ones ,
VVheeler [52] (n = 3) •
T his g e n e r a liz e s r e s u l t s o f P o s t [12] (n = 2) and
The p ro o f i s based on a th eo rem o f R osenberg [14]
which c h a r a c te r iz e s com plete system s o f t r u t h —fu n c tio n s i n g e n e r a l;
th e l a t t e r theorem in tu rn g e n e r a liz e s r e s u l t s o f P o s t [12] (n = 2)
[ 33 ]
and Y a b lo n sk ii .(n - 3 ) ' •
Theorem 1 , ï/h io h i s a c o r o lla r y o f Theorem 1 ,
s ta te s th a t
F
i s a S h e ff e r f u n c tio n i f f i t g e n e ra te s a doubly t r a n s i t i v e
subgroup o f the sym m etric group on
E,
T his im proves r e s u l t s o f Salomaa [2^
and S c h o fie ld [22j ,
The problem o f com pleteness f o r system s o f tr u t h - f u n c tio n s i n
i n t u i t i o n i s t i c n -v a lu e d lo g ic has n o t been c o n sid e re d p r e v io u s ly , ev en in
th e c ase n= 2 .
fie ld .
1,
Hence we are a b le to g iv e o n ly v e ry l im ite d r e s u l t s i n t h i s
In S e c tio n 2 we show t h a t tlie re e x i s t S h e ff e r f u n c tio n s in
D r. Roy 0 . D avies k in d ly communicated to th e a u th o r a d e r iv a ti o n o f
W h ee le r’s r e s u l t from th e theorem of Y a b lo n sk ii and rem arked t h a t he had
e s ta b lis h e d Theorem 1 f o r n ^ 8 u s in g R o senberg’s th eo rem ,
5
had n o t y e t p u b lish e d 'die p ro o f o f h is th e o re m ,
- 55 “
Rosenberg
i n t u i t i o n i s t i c tw o-valued l o g i c , th e s im p le s t b ein g a f u n c tio n o f fo u r
v a ria b le s .
Theorem 3 c h a r a c te r iz e s th e S h e ff e r f u n c tio n s o f fo u r
v a ria b le s .
V/e novf d e fin e th e b a s ic n o tio n s
Two fo rm u la s
a
and
^ o f th e
to be u sed i n t h i s C h a p te r,
n -v a lu e d p r o p o s itio n a l c a lc u lu s are
o lo c c ic a lly e q u iv a le n t i f f o r e v e ry v a lu a tio n
= Y * (fi)
V * (a )
The fo rm u la s
a
and
.
,
we have
ç ^
v ’^'p^(a) =
Fo ,
we have
/9 a r e s a id to be i n t u i t i o n i s t i c a l l y e q u iv a le n t
i f f o r e v e ry monotone fa m ily
Let
v
fo r a l l
A e A.
. . . be any sy stem o f n -v a lu e d t r u t h - f u n c t i o n s .
a t r u t h - f u n o tio n F
of r
d e fin a b le in term s of
We s a y t h a t
v a r ia b le s i s c la s s ic a l ly ( i n t u i t i o n i s t i c a l l y )
Fq , Fi , , , ,
i f th e fo rm u la
Fpi
,.,
is
c la s s ic a lly ( i n t u i t i o n i s t i c a l l y ) e q u iv a le n t to some fo rm u la
% ( p i,, . . , & )
c o n ta in in g o n ly th e c o n n e c tiv e s
Fc , Fi ,
Fq , Fi , . , ,
,
The sy sto n
i s s a id to be c l a s s i c a l l y ( i n t u i t i o n i s t i c a l l y ) com plete
i f e v e ry tr u th - f u n c tio n
F i s c l a s s i c a l l y ( i n t u i t i o n i s t i c a l l y ) d e fin a b le i n terms o f
The t r u t h - f u n c t i o n
f u n c tio n
Fq
Fq , F i , , . ,
i s c a l l e d a c l a s s i c a l ( i n t u i t i o n i s t i c ) S h e ffe r
i f th e sy stem c o n s is tin g o f
Fq a lo n e i s c l a s s i c a l l y
( i n t u i t i o n i s t i c a l l y ) co m p le te,
V/e rem ark i n p a ssin g "that th e n -v a lu e d tr u t h - f u n c tio n s
V, A f D f —, D i, , , , , Dp—1 , ®o, e i , , , , , e p—%
in tro d u c e d in C hapter I I form a com plete s e t , b o th c l a s s i c a l l y and
in tu itio n is tic a lly .
—
56
—
.
1.
S h e ff e r fu n c tio n s i n c l a s s i c a l n -v a lu e d l o g i c .
I n t h i s s e c tio n we s h a l l use a lg e b r a ic lan g u ag e t h r o u ^ o u t .
an a lg e b r a <A, (w i ) . ^>
Xc X
i s com plete i f f f o r each ,
r
a l l fiin c tio n s
f ; A*' -►A a r e d e fin a b le i n te rm s o f t h e o p e ra tio n s a i ( i f l ) •
th e sy stem o f n -v a lu e d t r u t h - f u n c tio n s
i f f th e a lg e b ra
<E,%
, . . .>
%
,
We s a y t h a t
O bviously
i s c l a s s i c a l l y com plete
i s c o m p le te .
As m entioned in the in tr o d u c tio n , th e p ro o f of Theorem 1 employs a
g e n e ra l theorem o f R osenberg [12).
d e fin itio n s .
As u s u a l
we l e t
E^ =
(o n E)
i s a su b set
we v /rite
r
v f ill denote th e s e t o f tr u th - v a lu e s
®h 1^
R(xi ,
argum ents and
R if
E
R
x^)
of
®a-ch h ^ n .
when
R is an
( x i , , , , , x^)e
R.
If
h - a r y r e l a t i o n we say t h a t
f(x ^ ,
R(x^^, . , , , x ^ ) ,
An
h -a ry
E ^ , and i s c a l l e d u n iv e r s a l
R ^ f(x ^ ,
An
B efore s t a t i n g t h i s theorem we g iv e some
R (x ^ , , , , ,
xp^
R =E^;
is
a fu n c tio n o f
p re s e rv e s
xj^) a l l h o ld .
X i, , , x^
a re n o t a l l d i s t i n c t , and
p e rm u ta tio n
a
R (x i ,
f
if
w henever
h -a ry r e la tio n is t o t a l l y re fle x iv e i f
o f th e in te g e r s
f
re la tio n
R (x i,
x^)
w henever
t o t a l l y sym m etric i f f o r each
1,
h
v;e have
<=> ^ ^ ^ (j(l)^
• ••»
The c e n tr e o f a t o t a l l y sym m etric h -a ry r e l a t i o n i s the s e t o f elem ents
c
su ch t h a t
R( xi , . , , , x^ ^ ,c )
h o ld s fo r a l l
x%, . , , , x^
f E .
A r e l a t i o n i s s a i d to be c e n tr a l i f i t i s t o t a l l y r e f l e x i v e an d t o t a l l y
sym m etric and has c e n tr e
C, ^C CCE
a re j u s t th e p ro p e r n o n -n u ll s u b s e ts o f
- 57 -
,
Thus th e s in g u l a r l y c e n t r a l r e l a t i o n s
E,
The p r o je c tio n fu n c tio n s
Ej
"*• E
a re d e fin e d by
pi»^(xi, • • • , %m) —
—1 ,
, . m) .
We may now s t a t e th e theorem o f R osenberg a s fo llo w s :
F o r a f i n i t e a lg e b ra
<E,
j.> (|E | = n > 2)
to be com plete
i t i s n e c e s sa ry
and s u f f i c i e n t t h a t i n e a c h o f the fbllowinis: c a se s t h e r e
e x is ts a t l e a s t
one
wi ( i f l )
t h a t does n o t p re s e rv e t h e r e l a t i o n R :-
1° R i s
a p a r t i a l o rd e r on
2° R i s
(th e g ra p h o f) a n o n - id e n tic a l p erm u tatio n of
ÿ
the r e l a t i o n
R is
Xi
w here
n = jf”
and
elem ent has o rd e r
4°
R
E;
i s an a b e li a n group in vdiich each non—zero
p ;
i s a n o n - i d e n t i c a l . n o n -u n iv e rs a l e q u iv a le n c e r e l a t i o n on
an
^
f o r some
R is
th e
I
h- a r y c e n t r a l r e l a t i o n on
h (3 ^ h ^ n )
E (1 ^ h
0 (x i),
have th e same
n) ;
and some s u r.je c tio n
. . , pr^ 0 ( x p i l < h
*6
-8^^
<A,(w
a p e rm u ta tio n o f
0
;
E *> E ^
fo r
4 = 1, .
a t l e a s t two of th e elem en ts
p r o je c tio n in
m
0(x&
0(x^^)
E^ )»
el
^
i s an a r b i t r a r y a l g e b r a , th en a s u b se t of
A,
o r an e q u iv a le n c e on
A
A sub a lg e b ra d i s t i n c t from
A
and
w ( i € l) .
i s s a id to be p ro p e r, as i s an
autom orphism o th e r th a n th e i d e n t i t y , o r a
n o n - u n iv e r s a l, n o n - id e n tic a l
The e x is te n c e o f p ro p e r con g ru en ces on
—
A,
i s c a ll e d a sub a lg e b r a ,
autom orphism o r congruence r e s p e c tiv e ly i f f i t i s p re s e rv e d by each
co n g ru en ce.
E;
h- a r y r e l a t i o n
( t h a t i s f o r each
If
vAth g r e a t e s t an d l e a s t e le m e n t;
+ Xg = X 3 + X *
G- = <E^ + >
5° R i s
(m > o)
E
38
—
A i s e q u iv a le n t t o th e
e x is te n c e o f homomorphic images o f
A n o t iso m o rp h ic to
A
o r to th e
o n e-elem en t a l g e b r a .
THEOREM 1 • A f i n i t e a lg e b r a
< A/ o >
w ith a s in g le o p e r a tio n i s com plete
i f and on ly i f i t has no p ro p e r sub a lg e b r a s , autom orphism s o r congruences .
P ro o f.
I n view of th e above-m entioned r e s u l t o f P o s t we may r e s t r i c t
a t t e n t i o n to th e case A = E , a > 2 , Suppose w i s an o p e r a tio n o f r argum ents.
The
^ n e c e s s ity o f th e c o n d itio n i s d e a r from 2 ° , 4*^, 5° o f R o senberg’s th eo rem .
To prove s u f f ic ie n c y we have to show in c ase s
R
th en
If
w
p re s e rv e s a p a r t i a l o rd e r ^
th e n e i t h e r {uj
f o r some
or
X i,
u = w (x i,
A - [ui
p re s e rv e s
u
Xp eA -[u}
th e n , because
Xp) ^ w (u ,
Suppose
n = p"'
c y c lic groups o f o rd e r
u)
and
p,
w ith g r e a t e s t elem ent
i s a p ro p e r sub a lg e b r a .
so t h a t
Then
F o r, i f
w (u ,
u,
w ( x i , , , , , Xp) = tL
Xi ^ u , . , , , XpV^ u ,
&= < E , + >
each n o n -zero e lem en t has o rd e r p ,
Zp
th a t i f
A has a p ro p e r s u b a lg e b ra , autom orphism o r congruence ,
1°
^
1*^ —
we have
u) = u ,
i s an a b e lia n group in w hich
G,
b e in g th e d i r e c t sum o f
may be i d e n t i f i e d w ith th e sp ace
i s th e re s id u e c la s s f i e l d o f th e in te g e r s modulo
p.
If
(Z ^)^
w
m
where
p re s e rv e s
th e r e l a t i o n
X l + Xg = X3 + X4
,
th e n i t s a t i s f i e s the f u n c tio n a l e q u a tio n
w (x i, . , , , Xp) + w ( y i, , , , , yp) = w (x i + y i ,
and i t
i s n o t d i f f i c u l t to show t h a t th e s o lu tio n s a r e o f th e form
w ( x i,
where
a e (2^)”’
d e t ( l - ZA^,) = 0
X = Xo,
Xp + yp) + w (0 , , . . , 0 )
and
Xp) = a + x i A i +
A i, , , , , Ap
th e n th e e q u a tio n
a re
. . . + XpAp
m x m m a tric e s
0 = x (l -ZA^)
so t h a t
- 59 -
o v er
Z ^, If
has a n o n -zero
s o lu tio n
w ( 35b
i.e.
X
Xq
L et
w
i . e . {xq !
5°
Suppose
Go
be the c e n tre o f
R
u.
x t ^ Co
h -a ry
S in ce
U
R
x = xb ,
^ 0
so t h a t
c e n tr a l r e l a t i o n
le t
v
C
u+i
= C U w ( C* ' ) :
V
y
r= 0 ;
suppose
. , , , x^) e R
we may w rite
XL = &/(% if , .
h ) , so a g a in ( x i ,
R(xi^ ,
R.
%f )
. . . , x^) f &
x^ ),
) .
i s n o n -u n iv e rs a l i t fo llo w s from v h a t has been proved t h a t
C / E;
6°
Xp ) ;
-ZAj,)
T h is i s c le a r f o r
w ith (xL , , , , , x f ) f C^*' ( i = 1 ,
s in c e by in d u c tio n h y p o th e sis
.
i s a p ro p e r s u b a lg e b ra ,
Then ( x i ,
I f no
+ w (xi,
I f d e t(l
and f o r each
Xj^) e
e Cq .
xl
= %
has a s o lu tio n
p re s e rv e s Ihe
C R, f o r each
G. K, (% ,
i f some
Xo + X p )
a = x ( l - ZA[)
Xo) = Xo;
we shovf t h a t
. ..,
i s a p ro p e r autom orphism .
+ X
th e n th e e q u a tio n
w( xq ,
+ X l,
thus V
Suppose
w
G^
i s a proper sub a lg e b r a ,
p re s e rv e s th e
an d , f o r some s u rje c tL o n
h -a ry
re la tio n
0 ; E -> (Ej^)™(m > O) ,
R,
v h ere
3^ h ^ n
R( x i , . , , , x^)
i s e q u iv a le n t
to
|[pr^0(xi),
(a )
If
h'" < n
. . . , pr^ 0 (x j^ )i| < h
fo r
6
= 1,
. . . , m.
th e r e l a t i o n
0 ( x i ) = 0 (x a )
i s a p ro p e r congruence u n le s s
E
has a p ro p e r s u b a lg e b ra .
F o r, t h i s
r e l a t i o n i s a non—id e n t i c a l , n o n -u n iv e rs a l e q u iv a le n c e r e l a t i o n , so i t
s u f f i c i o s t o show t h a t
0(w(xi^,
= 1,
if
0 ( x i ^ ) = 0 (xg^ ) , . , . , 0 ( x i ^ ) = ^ { x j ' )
x i ^ ) ) = 0(w(xg^ , . . . , Xg' ")),
m)
E
F o r some
we have
p r^ (0 (w (x i\
If
Suppose Ihe c o n tr a r y .
th en
X l*'))) / p r^ (0 (w (x a ^ , . . . , X g ^ ) ) ) .
has no p ro p e r s u b a lg e b ra s , th en ih e mapping
— 60 —
w : FT
E
is
s u r j e c t i v e , as a r e 0 ; E -►E ^
X'lf ,
.
( i = 1,
x f (i = 3, .
.
h)
h)
and p r^ i
may be chosen so t h a t
a r e a l l d i s t i n c t , i . e . , R( w( x i ^,
does n o t h o ld .
Since
R (xi^,..., x^ ),
c o n tr a d ic t s our s u p p o s itio n t h a t a
(b)
E ^ -» E ^ .
Suppose
]f = n
b i s e c t i o n we i d e n t i f y
E
and
p r^ (0 (w (x t , . x f ) ) )
. . . , Xi^),
. . . , w (x ^ , . . . , x ^ ))
. . . , R(xi*~ , . . . , x ^ ) h o ld , t h i s
p re s e rv e s
so t h a t 0
Thus elem en ts
R.
is b ije c tiv e .
By means o f t h i s
E ^ , w ith th e consequence t h a t
R( x i , . . . ,
x^)
i s e q u iv a le n t to
lîpr^U i),
C o n sid er th e mappings
. . . , p r^ (x ^ )!| < h
g^î
E^^ (6 = 1 , . . . , m)
(^1 ,
I f some
(of.
g.
th a t
im ply t h a t
~
fmf), ...,(^ 1 ^ ,
s u r j e c t i v e f o r o th e rw ise
.
E has a p ro p e r s u b a lg e b ra .
depends e s s e n t i a l l y on more th a n one o f i t s argum ents th e n
[ 2 ] , ^ 3 ], [53])
E^ such
g^
. . . , m.
d e fin e d b y
5 ••• 5 ^ 1 f
= p r^ (w (fe iS
V/e may suppose each
fo r 6 = 1 ,
(o
we can f i n d
g^ . assumes
h
does n o t p re s e rv e
(h-1 ) -e le m e n t s u b s e ts
v a lu e s on Hi x
R. Thus
H i,
. . . x H^r;
each
H^r
of
b u t t h i s w ould
= 1 , . . . , m) depends
e s s e n t i a l l y on o n ly one argum ent, so we may w rite
g^C^i,
•••,
f o r s u ita b le mappings
o’, r .
i n v a r i a n t under th e
) (6- = 1,
n o n -n u ll s u b se t I
mapping
~ ^ f . . . , m)
E v id e n tly , we have
pr^ w ( 3^ , . . . ,
I f some p ro p e r
(gj)
. . . , <ani*")=
o f tie i n d ic ie s
r (r(l) C l ) ,
—
61
—
. . , m) •
1,
th e n the r e l a t i o n
m is
p r ^ ( x i) = pr^Cxg)
i s a p ro p e r c o n g ru en ce.
1,
Set
.
.
f o r eac h
6 c I
I n th e c o n tr a r y case
I
i s a p e rm u ta tio n cf
m c o n s is tin g o f a s in g le c y c le o f le n g th
a ( x ) = w( x,
m.
. . x) ,
so t h a t
p r^ a ( x ) =
By in d u c tio n T/e have f o r
W
U = “I ,
m) .
k > 0
p r^ «*< (x) =
Y.r(«) • • • \ _ i (8) P V (8)
(« = 1 , . . . , m) ,
SO, i n p a r t i c u l a r ,
pr^a^(x) =
. . . , m).
(^ = U
From t h i s we v e r i f y t h a t
(wCx' , . . . . xT)) = w ( a ' " ( x ‘ ) ,
If
a'’’
i s n o t th e i d e n t i t y we c o n s id e r th r e e c a se s : ( i )
i s c o n s ta n t = Xo ,
w(xo,
so t h a t [xoi
«'“ ( x ! ') ) .
th e n
Xo)
if
or
=w (a"'(xo),
. . . ,
i s a p ro p e r su h a lg e b ra ;
a p ro p e r autom orphism ; ( i i i )
if
0^ ( x o ) )
(ii)
= a"* ( ûj ( x q , . . . , X o ) )
if
= Xq,
a"’ i s one-one th e n
a”’
i s n o t c o n s ta n t and n o t one-one th e n
th e r e l a t i o n
a"’ ( x i ) = a'" (xa)
i s a p ro p e r c o n g ru e n c e ,
If
i s th e i d e n t i t y th e n
i s th e i d e n t i t y on
(6 = 1 ,
YgY^(^) • * •
m) .
^ (6)
Thus f o r any c h o ic e o f
we can s a t i s f y th e e q u a tio n s
( « = 1 ,
- 62 -
e
) ;
f
is
th e n i f
Xq = ( ^ i ,
we have
w(xo, .
%o) = %o
so t h a t [xo!
i s a p ro p e r s u b a lg e b ra .
The p ro o f o f Theorem 1 i s now c o m p le te .
THEOEEUi 2 ,
A f i n i t e a lg e b r a
< A,w >
w ith more th a n two elem en ts i s com plete
i f and o n ly i f th e s e t of fu n c tio n s d e fin a b le from
t r a n s i t i v e subgroup of th e sym m etric group on
P ro o f.
If
A
w
in c lu d e s a doubly
A.
i s n o t com plete th e n by Theorem 1 i t has a p ro p e r s u b a lg e b ra ,
autom orphism o r congruence, w hich must be p re s e rv e d by a l l fu n c tio n s
d e f in a b le i n term s of
R (ai^ , . . . , a ^ )
w.
B ut i n g e n e r a l i f
does n o t, where
c o n s is t o f
h e le m e n ts , th e n
c a r r i e s a%
to
R
{ai,
. . . , a^}
. , , , a^)
and
[ai^,
h o ld s w h ile
.
a^ }
each
i s n o t p re s e rv e d by a r y p e rm u ta tio n w hich
ai^ , . . . , a^ to a^^ ,
A pplying t h i s i n th e case o f a p ro p e r
s u b a lg e b ra , automorphism o r congruence, vfhere
fo llo w s t h a t
R(ai,
h
does n o t exceed 2 , i t
Ù) can n o t g e n e ra te a doubly t r a n s i t i v e group o f p e rm u ta tio n s .
— 63 —
2•
S h e ff e r fu n c tio n s in i n t u i t i o n i s t i c l o g i c .
In t l i i s s e c t i o n we w i l l be concerned s o l e l y w ith o rd in a ry i n t u i t i o n i s t i c
lo g ic ;
th u s
n = 2
th ro u g h o u t.
I n m ost c o n te x ts i t i s c o n v e n ie n t to om it
th e a d je c tiv e " i n t u i t i o n i s t i c " and r e f e r sim ply to S h e ffe r f u n c tio n s e t c .
I f fo rm u las
a,/3
a re ( i n t u i t i o n i s t i c a l l y ) e q u iv a le n t we w r ite
a ~ p .
B efore p ro c e ed in g we m ention a co n cep t in tro d u c e d by Kuznecov [ 8 ] ,
w hich is c l o s e l y r e l a t e d t o Ihe concept of S h e f f e r f u n c tio n .
a(pi,
. . . , Pp)
a S h e ffe r form ula i f e v e ry fo rm u la i s e q u iv a le n t to some
member o f the l e a s t s e t
w hich i s su ch t h a t i f
F
L e t us c a l l
which c o n ta in s a l l p r o p o s itio n a l v a r ia b le s and
U
yi;
•••> Yr
i s a S h e ffe r fu n c tio n i f f F p i
th e n
^
. . . . pp
a(Yi,
. . . , Yr) ^ ^
•
C le a rly
i s a S h e ff e r fo rm u la , b u t t h e r e
e x i s t S h e ffe r fo rm u las w hich do n o t corresp o n d to any S h e ffe r fu n c tio n ^ ,
Kuznecov has shown th a t th e r e e x i s t S h e ff e r form ulas o f th r e e v a r ia b le s b u t
none o f two v a r ia b le s .
E very tr u t h - f u n c tio n i s d e fin a b le in te r n s o f
In d e e d , by re d u c in g th e (tw o -v alu ed ) tr u t h - f u n c t io n ^
a
v,
,
F
D ,
-
.
to i t s p r i n c i p a l
conjUDative norm al f or m,
F(xi,
we se e t h a t th e fo rm u la
. . . , Xp) =
F pi
...
pp
A
K ( i i , *•
(x^^i ^v
...
V
^k) “ C
i s e q u iv a le n t to a c o n ju n c tio n o f
fo rm u las o f the form
2.
T h is phenomenon o f c o u rse does n o t o ccu r in c l a s s i c a l tw o -v alu ed l o g i c .
— 64 —
(1)
p ,
A
...
A
D
p,
p
v/here
ky . . . , kp
0 ^ 6 ^
V
j
6+1
6
...
V
p
iCp
i s a p e rm u ta tio n o f th e in te g e r s
A, V, D , -, a r e d e f in a b le i n term s o f
a Dj S
i t fo llo w s t h a t
F
F.
F
In view o f ihe e q u iv a le n c e s
F
v , s , -, a re d e f i n a b le .
vhose norm al for m is
^ ( p A q A r A s) A ( p D q v r v s ) A
We have ih e e q u iv a le n c e s n .p
q
~
FlO pq,
f o u r v a r ia b le s .
ps
q
In f a c t ,
i s a S h e ffe r f u n c tio n
(aD/3),
i s a S h e ffe r f u n c tio n i f f
C onsider the t r u t h - f u n c t i o n
V
F.
.~ .(a.v/3)3/3,
a AjS . ~ . a s
p
and
r . ° T h is c o n ju n c tio n w i l l be c a l l e d ihe norm al form o f
The e x is te n c e o f such a normal for m im p lie s t h a t
iff
1, . . . r
~
~
F
Kpppp,
FppOO.
1
Hence
( q D p v r v s ) .
~
E p p p -, p , 0
F
~
-, 1 ,
i s a S h e ffe r f u n c tio n o f
may be re g a rd e d as th e s im p le s t example o f a
S h e ff e r f u n c tio n , s in c e e v e ry S h e ffe r f u n c t io n has a t l e a s t fo u r v a r ia b le s and
a t l e a s t th r e e c o n ju n cts i n i t s norm al f o r m.
method o f
T his w i l l be proved by th e
McKinsey [ 9 ] .
C onsider th e d i s t r i b u t i v e l a t t i c e
L re p re se n te d in F ig u re 1 .
0 ^
la
< / \o d
V b
1.
Fig. 1
3.
In th e extrem e cases
(p
xCi
V
...
V
p
Kp
)
6 = 0
and -(p
Kj
an d
aI
.. .. ..
6 = r , ( l ) d a io te s th e fo rm u las
a
A
— 65 —
p, )
Kp
re s p e c tiv e ly .
By s e t t i n g
-, x = sup[z ; z a x = Oj
v/e c o n v e rt
L
and
x D y = sup [z : z a x ^ y i ,
in to a pseudo-B oolean a lg e b r a .
d i f f e r e n t v a lu e s of
0
b
c
d
a
1
If
F
i s a S h e ffe r
v/hich i s c lo s e d u n d e r
th e s u b s e ts [1]
under
F,
and
D
0
b
c
d
a
1
0
b
c
d
a
1
1 1
0 1
0 d
0 c
0 b
0 b
1
1
1
c
c
c
1
1
d
1
d
d
1
1
1
1
1
a
1
1
1
1
1
1
1
0
0
0
0
0
V
and
F
we can d eterm in e i t s v a lu e in
f u n c tio n o f
F
r
v a r ia b l e s , th e n any s u b s e t o f
must a ls o be c lo se d u n d e r
[O]
are n o t c lo s e d under
a
v, D, -
,
th e v a lu e
a
.
S ince
L
-
-(p i
[a]
^ th e y a r e n o t d o s e d
F
th e v a lu e s
re s p e c tiv e ly .
a
F
v,
Fpi
d i s t i n c t from
a,
...
pp
a.
Some
and i f t h i s is
Thus the a n te c e d e n t c o n ta in s a
and th e co n seq u en t c o n ta in s
a t l e a s t tv/o p r o p o s itio n a l v a r ia b le s o f w hich one ta k e s the v a lu e
c
o th e r
d . I n a d d itio n th e r e must be y e t a n o th e r v a r ia b le which ta k e s
v a lu e
0 , o th e rw ise th e c o n ju n c t
- (p i
would ta k e th e v a lu e
has a t l e a s t f o u r v a r i a b l e s .
t alces
and th e a n te c e d e n t and c o n seq u en t ta k e
p r o p o s itio n a l v a r ia b le w hich ta k e s th e v a lu e 1 ,
F p i . . . Pp,
must
b u t n o t the fo rm u la
must ta k e th e v a lu e
0 < 6 < r,
and
Pp)
a
o f p i , . . . , pp
o f th e form ( 1 ) , th e n
1
. . .
i s n o t c lo se d un d er
f o r c e r t a i n v a lu e s
c o n ju n c t i n th e norm al form o f
a
L
Since
,
and from t h i s we e a s i l y deduce t h a t th e norm al f or m o f
. . . V Pp)
L
o f v a lu e s to t h e v a r i a b le s .
c o n ta in a s a c o n ju n c t th e fo rm u la
(p i
-, x
a re sh ovm in th e
x ,y
From th e normal form o f a tr u t h - f u n c t i o n
f o r any g iv e n a ssig n m e n t
The v a lu e s o f
0.
Since
—
a
. . .
Pp),
—
th e
and hence a l s o
We have th e r e f o r e shov/n t h a t
L - [b]
66
a
and th e
i s n o t c lo s e d un d er
F
a.
F p iy . . y P p
takes th e v a lu e
d i s t i n c t from
b.
b
f o r c e r t a i n v a lu e s o f
F
.
A c o n ju n c t of th e form (1) can n o t ta k e ihe
f o r v a lu e s o f ih e v a r ia b le s d i s t i n c t from
of
p i,
b.
-
two o th e r c o n ju n c ts o f w hich one ta k e s th e value
F
v a lu e b
Hence th e norm al for m
must c o n ta in , i n a d d itio n to th e c o n ju n c t
t h a t i s the norm al form of
pp
(p i a . . . a p p ) ,
cand th e o th e r
d;
has a t l e a s t th r e e c o n ju n c ts .
An e la b o r a tio n o f th e above argum ent e n a b le s us to c h a r a c te r iz e th e
S h e ff e r f u n c tio n s o f fo u r v a r ia b le s .
THEOREM 3 • L e t
In o rd e r t h a t
F
F
be a c l a s s i c a l S h e ffe r f u n c tio n o f fo u r v a r ia b le s .
sh o u ld be an i n t u i t i o n i s t i c S h e f f e r f u n c tio n i t i s
n e c e s s a ry and s u f f i c i e n t t h a t ev ery s u b s e t o f
F
sh o u ld be a pseudo-B oolean s u h a lg e b ra o f
Proof.
L.
The n e c e s s ity o f th e c o n d itio n i s o b v io u s .
th e s u f f ic ie n c y , l e t us suppose t h a t
F
L w hich i s c lo se d u n d er
F
In o rd e r to prove
s a t i s f i e s t h e c o n d itio n .
i s a c l a s s i c a l S h e ff e r f u n c tio n , th e fo rm u la
Since
- ( p * q A r A s) ap p ears
a s a c o n ju n c t in i t s norm al form b u t n o t th e fo rm u la ( p v q v r v s ) .
Hence
Fpppp
i s e q u iv a le n t to
e q u iv a le n t to
-»p.
- , 0, 1
Since
F
is c la s s ic a lly
0 , and s o , by a w ell-know n theorem o f G liv en k o ,
i n t u i t i o n i s t i c a l l y e q u iv a le n t to
th a t
Some fo rm u la i n
0.
From th e s e c o n s id e ra tio n s i t fo llo w s
a r e d e fin a b le i n te rm s of
L - [a]
i s n o t c lo s e d un d er
u sed above t h a t th e norm al form of
F
F.
v,
we deduce by th e argum ent
c o n ta in s a c o n ju n c t o f th e fbrm (1)
such t h a t , f o r a s u i t a b l e assig n m en t o f v a lu e s to t h e v a r ia b l e s ;
(i)
th e a n te c e d e n t c o n ta in s a v a r i a b l e ,
-
6 7
-
p
s a y , w hich ta k e s th e v a lu e 1 ;
(ii)
th e consequent c o n ta in s two v a r i a b l e s ,
ta k e th e v a lu e s
c
and
d
r e s p e c tiv e ly ;
0
q
(iii)
v a ria b le , s
s a y , takes th e v a lu e
c o n se q u e n t.
We conclude t h a t the norm al for m o f
an d
r say, which
th e rem ain in g
and so m ust a p p ea r i n th e
F
c o n ta in s th e
c o n ju n c t
p D q
V
r
V
s•
On th e o th e r hand, th e fo llo w in g fo rm u las c an n o t a p p e a r as c o n ju n cts
s i n c e , u n d er the a ssig n m e n t o f v a lu e s w hich we a re c o n s id e r in g , Ihe y
ta k e v a lu e s l e s s th a n
a;
p A q D r v s ;
p Ar D q
v s;
p A q Ar 3 s .
U sing t h i s in fo rm a tio n we s e e t h a t th e form ula
e q u iv a le n t to
to
p—q
q v r.
o r to
q D p v r v s
A lso , th e form ula
pD q
L ~ [b]
o f th e form (1)
re s p e c tiv e ly .
v
F
a
,
F.
we deduce as b e fo re t h a t
and
X i D Yi
v a r i a b l e s , ta k e th e v a lu es c
A ll o th e r c o n ju n c ts ta k e v a lu e s g r e a te r
takes th e v a lu e
^ d
In
Xg D Yg
w h ich , f o r a s u i t a b l e assig n m e n t o f v a lu e s
th e c o n ju n c t
and
and
and
th a n
- (p A q A r A s ) ,
0; upon s u ita b le renam ing of
may suppose t h i s v a r ia b le to be
v a lu e s
i s e q u iv a le n t
a re d e f in a b le i n term s o f
c o n ta in s two c o n ju n c ts
owing to th e p re sen c e o f
c
and D
i s n o t c lo se d un d er
( d i s t i n c t from b) to th e
th e v a lu e s
is
i s p r e s e n t as a c o n ju n c t i n th e norm al f o r m.
th e norm al form of
v a r ia b le
F p q 0 0
r 0
depending on v/h e t h e r o r n o t th e form ula
e i t h e r c ase i t fo llo w s t h a t
Since
F 1 q
a o
The co n seq u en ts
d
b . A gain,
some
th e v a r ia b le s we
Yi
and
Yg
d
r e s p e c tiv e ly ;
th e a n te c e d e n ts
^ c
re s p e c tiv e ly .
Hence th e r e a r e v a r i a b l e s ,
—
68
—
X%
and
Xg
ta k e
ta k e
p
and
q s a y , w hioh ta k e th e v a lu e s
such t h a t
Y i.
q
occurs i n
The v a r ia b le
s
Xi
and
c
Yg
and
and p
d
r e s p e c tiv e ly and
occurs i n
n u s t ap p ear in b o th Y% and
Yg.
c a se s a cc o rd in g to th e p o s itio n o f th e r e n a in in g v a r ia b le
(i)
v a lu e
If
r
o c cu rs i n b o th
Yi
and
Y g,
th e n
3 r
A q
is
r .
m ust ta k e th e
V s
c an n o t a p p e a r as a c o n ju n c t i n the norm al for m o f F ,
(ii)
We d is tin g u is h
0 , so th e f o m u la
p
FpqOO
r
Xg and
i s e q u iv a le n t to
If
r
Thus
th e form ula
pa q.
o ccu rs i n
X% o r
Xg,
th e n th e v a lu e ta k e n by
r
non—z e r o , and so th e fo rm u la
p Aq Ar 3 8
c an n o t a p p e a r a s a c o n ju n c t in th e normal form of
(a)
FpqqO
If
r o ccu rs i n
i s e q u iv a le n t to
(b)
If
i s e q u iv a le n t to
(c)
If
i s e q u iv a le n t to
X% an d
F.
Yg,
th e n th e form ula
p= q.
r o ccu rs in
Yi
and
X»,
th e n th e
fo rm u la FpqpO
Xi
and
Xg,
th e n th e
form ula FpqtO
p s q,
r o ccurs in
p a q
o r to
ps
q , depending on v/hether o r n o t
th e fo rm u la
r 3 p
V
q
V
s
a p p ea rs a s a c o n ju n c t in the norm al form of
th a t a
or A
i s d e f in a b le in term s o f
—
69
—
F.
F.
In a l l c ases vre see
Combining t h e r e s u l t s of th e p re c ed in g p a ra g ra p h s , we deduce t h a t
F
i s a S h e ffe r f u n c tio n , a s was to be shown.
Vfe observe t h a t an a n a ly s is o f the p ro o f o f Theorem 3 would r e a d i l y
g ive a c h a r a c te r iz a ti o n o f th e S h e ff e r fu n c tio n s o f fo u r v a r ia b le s i n
term s o f t h e i r t r u t h - t a b l e s .
I t would be o f i n t e r e s t to Imov/ w hether theorem s of th e above ty p e
h o ld f o r fu n c tio n s of more th a n fo u r v a r i a b l e s .
th a t th e l a t t i c e
r e s u lt [ 5]
L
We rem ark f i n a l l y
can be u sed to g iv e a s h o r t p ro o f o f McKinsey’s
on th e independence o f
a , v , D ,
In d e e d , f o r each
o f Ih ese c o n n e c tiv e s th e r e i s a fiv e -e le m e n t s u b s e t o f
L
vshich i s
n o t c lo s e d u n d er t h a t c o n n e c tiv e b u t w hich i s c lo s e d u n d e r the rem ain in g
th re e .
—
~/0
—
B ib lio g ra p h y
[1 ]
C .C , Chang and À . Horn;
Prime i d e a l c h a r a c t e r i z a t i o n o f g e n e ra liz e d
P o s t a lg e b r a s . L a ttic e th e o ry , ed ♦ D ilw o rth , P ro v id en ce ( 1960 ) 4 3 -4 8 ,
[2]
Roy 0 , D a v ie s;
Two theorem s on e s s e n t i a l v a r i a b l e s , J . London
M ath. Soc . k-l (1966 )
[3 ]
333- 3 3 5 .
C. E p s te in , The l a t t i c e th e o ry o f P o s t a lg e b r a s , T r a n s . Amer, M ath. Soc .
95 ( i 960) 300 - 3 1 7 .
[4 ]
C . C entzen, U ntersuchtm gen ilb er das l o g i s che S c h lie s s e n , M ath, Z e i t s c h r i f t
39 ( 1934- 5 ) 176-210
[3 ]
K . C odel,
and
405 - 4 3 1 .
Zum i n t u i t i o n i s t i s c h e n A u s s a g a n k a lk ü l , E rg eb n isse e in e s
m athem atischen Kolloquium s H e ft 4 (l9 3 3 ) 4 0 .
[6]
L . H enkin, Fragm ents o f the pro p o s i tio n a l c a lc u lu s ,
J . Symbolic Logic
14 ( 1949 ) 4 2 -4 8 ,
[7]
S . K rip k e , S em an tical a n a ly s is o f i n t u i t i o n i s t i c lo g ic I ,
Formal system s
and r e c u r s i v e f u n c tio n s , e d , C ro ssle y and Dummett, Amsterdam ( 1963 )
92-130 .
[8]
A, V. Kuznecov, Analogs of th e ‘'S h e f f e r s tro k e " in c o n s tr u c tiv e l o g i c ,
S o v ie t Math e u n tie s 6 ( 1963 ) 70—7 4 .
[9 ]
J ,C ,C , McKinsey, P ro o f of th e independence o f th e p r im it i v e symbols o f
H eyting^s c a lc u lu s o f p r o p o s itio n s , J , Symbolic Logic
[1 0 ]
4 (l9 3 9 ) 1 5 5 -1 5 8 .
J . P o r te , R echerches s u r l a th é o r ie g é n é ra le des systèm es fo rm els ,
P a r is and Louvain (l9 5 5 ) .
-
7
/ -
[11]
E J j . P o s t, I n tr o d u c tio n to a g e n e ra l th e d ry o f e le m e n ta ry
p r o p o s itio n s . Amer, J , M ath. 4 5 ( l9 2 l) 163-183*
[ 12 ]
E J j , P o s t, The tw o -v a lu e d i t e r a t i v e system s of m a th em atical l o g i c .
P r in c e to n ( l9 4 l) •
[ 13 ]
H. Rasiowa and R* S ik o r s k i, The m athem atics of m etam ath em atics,
Warsaw ( 1963 ) .
[14 ]
I* R osenberg, La s t r u c t u r e des f u n c tio n s de p lu s ie u r s v a r ia b le s
su r un ensem ble f i n i , C.R. A cad, S c i , P a r is
[1 3 ]
t,2 6 0 ( 1963 ) 3817-3819*
P . O . Rosenbloom, P o s t a lg e b ra s I , P o s tu la te s an d g e n e ra l th e o r y .
Amer. J . M ath. 64 (l9 4 2 )
I 67- I 8 8 .
[16 ]
J .B. R o sse r and A . T u r q u e tte , M any-valued lo g ic s , Amsterdam (1932) •
[ 17 ]
&• R ousseau, Note on a problem o f P o r te , P ro c . Cambridge P h i l . Soc.
(fo rth c o m in g )•
[1 8 ]
Gr. R ousseau,
A d e c id a b le c l a s s o f number t h e o r e t i c e q u a tio n s ,
J . London Ivlath. Soc. 4 l(l9 6 6 ) 7 3 7 -7 4 1 .
[ 19 ]
G. R ousseau, Sequants in many v a lu e d lo g ic I ,
Fund. M ath. 60 ( 1967 )
2 3 -3 3 .
[ 20 ]
G. R ousseau, Com pleteness i n f i n i t e a lg e b ra s w ith a s in g le o p e r a tio n ,
P r o c . Amer. M ath. S o c. (fo rth co m in g ) ,
[ 21 ]
G, R ousseau, Note on th e d e c i d a b i l i t y of a c e r t a i n c la s s o f number
th e o r e t i c e q u a tio n s , J . London Math, S o c . (fo rth c o m in g ),
[2 1 a]
Grm R ousseau, Note on a g e n e r a liz a tio n o f th e Boolean i d e a l theorem
e q u iv a le n t to th e axiom o f choice*
[21b]
B u ll.A c a d .P o l.S c i * 13 (1963) 321-322
G-.Rousseau, Remark on r i g i d o rd e r ty p e s . B u ll .Acad .P o l #Sc i . (fo rth co m in g
-7 2 -
[22]
A, Salom aa,
On b a s ic groups f o r th e s e t o f fu n c tio n s o v e r a f i n i t e
domain, iin n . A cad, S c i. P e n n . S e r. A . I . m ath . 338 ( 1963 )
[ 23 ]
A, Salom aa,
On e s s e n t i a l v a r i a b l e s o f f u n c tio n s , e s p e c ia ll y in
th e a lg e b r a o f l o g i c ,
339 ( 1963 )
[ 24 ]
15 PP.
Ann, A cad. S o i , P e n n . S e r . A . I . M ath,
11 PP .
P . S c h o fie ld , Complete s u b s e ts o f mappings o v er a f i n i t e dom ain,
Pr o c . Cambridge P h i l , Soc. (fo rth c o m in g ).
[ 25 ]
J . S chm idt, A g e n e r a l e x is te n c e th eo rem on p a r t i a l a lg e b r a s and
i t s s p e c ia l c a s e s , C o llo q . M ath. 14 ( 1966 ) 73- 8 7 .
[ 26 ]
R . S ik o r s k i, P ro d u cts o f a b s t r a c t a lg e b r a s . F und. M ath. 34(1952)
211 - 2 2 8 .
[ 27 ]
R . S ik o r s k i, Boolean a l g e b r a s .
2nd. o d . B e r lin , G o ttin g e n , H e id e lb e rg ,
New York ( 1964 ) .
[ 28 ]
MJ i , S to n e , T o p o lo g ic a l r e p r e s e n ta tio n o f d i s t r i b u t i v e l a t t i c e s and
B rouw erian l o g i c s , C asopis P e s t . M at. l y s . 67(1937) 1-25*
[ 29 ]
T . T raczy k , Axioms and some p r o p e r tie s o f P o s t a lg e b r a s , C o llo q , Math ,
10 ( 1963 )
[ 30 ]
193 - 209 .
T . T raczy k , An e q u a tio n a l d e f i n i t i o n o f a c la s s o f P o s t a lg e b r a s .
B u l l , A cad. P o l . S c i .
12 ( 1964 ) 1 4 7 -1 4 9 .
[ 31 ]
L . I , Wade, P o s t a lg e b r a s and r i n g s , Duke M ath. J , 12(1945) 3 8 9 -3 9 5 .
[ 32 ]
R. F . 1/i/heeler, Complete c o n n e c tiv e s f o r the 3 -v a lu e d p r e p o s itio n a l
c a lc u lu s , P r o c . London M atli, So c . ( 3 ) 16 ( 1966 ) I 67- I 9I .
[ 33 ]
S. V. Y a b lo n s k ii, F u n c tio n a l c o n s tr u c tio n s i n k -v a lu e d lo g ic
(R u s s ia n ), Trudy M at. I n s t . StekLov 5 l(l9 5 8 ) 5 -1 4 2 .
-7 3 -
© Copyright 2026 Paperzz