Loh Tsee Foong Director Children ICU KKH Dy/Director Education Office Paeds ACP A/Professor Duke NUS SoM Lead, Child Protection Team Director PFCCS Singapore Hypoxaemia • ARDS, ALI, AHRF • Oxygenation indices (P/F; OI) • American European Consensus Conference • Berlin definition update on ARDS • PARDS PALICC group Ventilator modes • Basic P-CMV; P-AC; PRVC; VC-AC • Non basic HFOV APRV BCV HFPV • Adjuncts (iNO, PP, RM) EmBase PubMed Medline • Exclude case reports Outcomes • Mortality • Oxygenation indices – OI P/F SaO2/FiO2 • Performance scores • LOS length of stay • VFD ventilator free days • Side effects Very often medical care for child is based on what works for adults • Selective adoption Ventilator Induced Lung Injury VILI/ Open lung Low Vt, higher PEEP, Limiting Ppk Pplat Adjuncts (iNO, RM, PP, fluid management, steroids) Permissive Hypercapnia and allowable saturations VC-AC; PC-AC; PRVC Mortality have improved • What about lessons from neonatology? Khemani R et al AJRCCM 182: 1465-74 Needham DM et al BMJ 344: e2124 PALIVE study “What the real world is” • 59 PICU in North America and Europe Variability in practise Use of CMV 75% HFOV 16% NIV 8% PC-CMV 44% with 8.3+/-3.3 ml/kg No clear PEEP & FiO2 relationship Adjunctive treatment not standardised • Few explicit protocols in paediatric ventilation • Use of ideal or actual body weight uncertain Santschi M et al PCCM 11: 681-9 “What the ideal world is” Given 3 hypothetical cases to interact • Mild, moderate, severe ALI Discrepancy in • Use of PEEP Elevated PEEP to 1214cmH2O 50%kept PEEP <8cmH2O • Vt used None chose Vt>10ml/kg 20% used Vt>10ml/kg • Adjuncts iNO 12.7% PP 17.6% 90% use both • HFOV use 8.5% No uniformity in theory Mismatch in knowledge and practise Limited evidence to support PC or VC • PC decelerating flow • Pressure Regulated Volume Control OI; PedsLIS; P/F; Cdyn relate to mortality • SCT n=398 AHRF PCV lung protective strategy • Vt 610ml/kg Trend for higher mortality with lower Vt & VFD Worse lung had lower Vt Higher Vt and better outcomes in less severe ALI ? Optimal Vt used under LPS Use of permissive hypercapnia PC CMV • Generated Vt is function of severity of lung dis • Do we need to standardised Vt? Smaller diameter airways high resistance Use of higher PEEP hyperinflation Higher dead space in children hypo alveolar MV Prella M et al Chest 122: 1382-8 Khemani G et al ICM 35: 1428-37 High Frequency Oscillation Ventilation • Lung protective features Use in 30-50% of paediatric ARDS/ALI • Lack of universally accepted practice for initiation or use Evidence for variability Practice has not changed over decades Based on OI >3d of MV before HFOV use Mehta NM et al Curr Opin Crit Care 10: 7-12 Ben Jaballah N et al PCCM 7: 362-7 Arnold JH et al CCM 28: 3913-9 Erickson S et al PCCM 8: 317-23 Randolph AG et al JAMA 288: 2561-8 ARDS n=25 Failed CMV Improved oxygenation • OI 38 17 • P/F 65152 • Unchanged haemodynamics Overall mortality AHRF n=17 Failed CMV • PCO2 >85 PO2 <60 Improved oxygenation • 17% trachael bleeding Overall mortality 47% 52% Pinzon AD et al Rev Assoc Med Bras 59: 368-74 Tassiou I et al ICM 36 (S2) S108 Retrospective study n=69 SCT Argentina • ARDS failed CMV 8h no ECMO use • 80% LRTI or sepsis • 60% co-morbidities • 93% refractory hypoxia • 33.4% survival • Non survivors Higher acuity scores MOF Worse LIS & oxygenation indices Taffarel P et al Arch Argent Pediatr 110: 214-20 N=80 ARDS 40% Time on CMV • SCT Portugal • 8.8h (survivor) vs 133h • 85% prior CMV 12h (non survivor) • 30h (survivor) vs 63h (non survivor) • Mortality 40-50% • 70% refractory • • • • • hypoxia <90% Sat/FiO2 improve 24h Reduction in FiO2 Reduction PCO2 84% survivors Death MOF, HLHS, shock & resp failure Moniz M et al J Pediatr 89: 48-55 Fort et al 5.1d Mehta et al 5.6d Fedora M et al Scr Med 74: 233-44 Slee-Wijffels FY et al Crit Care 9: R274-9 Fort P et al CCM 149: 818-24 Mehta S et al CCM 29: 1360-9 Rescue or preemptive use? Cochrane review 2011 update AHRF n=28 Lung protective strategy Improved oxygenation indices • P/F 30-40% • reduction in FiO2 • HFOV better at T8hr • Similar after 24hrs Fioretto JR et al Pediatr Pulmonary 46: 809-16 Theoretical advantage • Constant distending pressure Higher MAP lower Ppeak • Spontaneous breathing • Concern over release phase Not new! Limited RCT in adult None in paediatrics Varpula T et al Acta Anaesth Scand 48: 722-31 Siau C et al CCM 37: 2448-54 Randolph AG et al CCM 37: 2448-54 Spontaneous Breath PEEPH P PEEPL Synchronized Transition Very short release time TL – I:E reverse “CPAP with release” or “BiPAP IRV” • Recruitment effect No feedback loop, PS and all SB at TH • Release ventilation during APRV assoc with decreasing Paw and lung distension Habashi NM et al CCM 33(3)supp: 228-240 • Tidal ventilation during CMV assoc with increasing Paw and lung distension • SB in APRV improve lung aeration in OA ALI – N=24 pigs OAALI assign to APRV+/SB – PaO2 better in SB gp – Higher EELV on CT Wriggle et al Anesthesiology 99: 376-84 APRV - SB APRV + SB Effectiveness of spontaneous respiration • Improved pulmonary perfusion Prospective crossover cohort study APRV vs PC-SIMV N=20 post-tetralogy, BCPC or Fontan repair Demonstrated improved pulmonary blood flow and oxygen delivery in patients post tetralogy rand BCPC repair • Better cardiopulmonary interactions Walsh et al CCM 39(12): 2599 Assess effectiveness of APRV in children • PRCT crossover MV<7d APRV vs VCV-SIMV • n=15 mild-mod lung disease (postop, pneumonia) Excludes obstructive airway disease, CHD SIMV and APRV crossover Inspiratory Paw lower with APRV Comparable oxygenation and ventilation Schultz TR et al PCCM 2: 243-46 Retrospective review Single center PICU n=13 • Assess efficacy and effectiveness • American -European Consensus ARDS criteria • OI > 10 or clinical decision by physicians No deterioration in haemodynamics & respiratory by APRV pO2/FiO2 no change in 1 and 12 hr post-APRV, improved thereafter OI increased at 1 and 12 hr post APRV, none thereafter N=5 died (38%) 4/5 were immunocompromised with HFOV introduced Kawaguchi A. et al CCM 37(12S): A465 H1N1 pneumonia Infants with ARDS H1N1 on PCR with <7d Hisashi et al Ind J Paed 78: 348-350 Demet D et al Ind J Paed77(11) 1322 Loh TF et al CCM 37(12S) 395 N=5 diagnosed with ALI (a/A < 0.2), PEEP >=7 cmH2O, Open Lung ventilation with protective lung strategy If OI >0.1 or FiO2 >0.8 converted to APRV Better oxygenation and ventilation indices over 24hr Decrease FiO2 and MAP over 24hr N=4 survive N=1 death (on HFOV & iNO) Reduced sedation needs after APRV in all patients 100 90 Use of HFOV 2006-2012 APRV introduced 80 70 60 Admissions tens/yr Percent MV % 50 40 30 20 10 0 2006 2008 2010 2012 Pre-emptive application of APRV in rat model of trauma/ haemorrhagic shock with ARDS n=10 VC-SIMV Tv 10ml/kg PEEP 0.5cmH2O APRV Ph 15-20 Pl 0 cmH20 Th 1.3-1.5s Tl 0.11-0.14s Prevented ALI measured on P/F ratio Correlated with histopathology between 2 groups BAL dcr bronchial protein, incr Prot B and epithelial cadherin • APRV attenuates clinical and histological lung injury in trauma/ haemorrhagic shock Roy SK et al Shock 40(3): 210-216 Retrospective n=60 failed CMV SCT • Immunocompromised ARDS • Either HFOV (n=31) or APRV(n=29) no crossover Left to physician discretion • CMV 1d • Improvement in P/F OI PCO2 with lower MAP • Mortality APRV 62% HFOV 65% Stem Cell Transplant worse outcome • N=6 started on ECMO (only 1 survivor) • P/F 24h predicted survivors • Other cutoffs for APRV & HFOV for survivors Yehya N et al PCCM 15: e147-56 Yes • Even as rescue when CMV fails • HFOV use early • APRV use possibly preemptively PARDS diverse etiologies myraid of inter-related pathophysiological events patient comorbidities and concurrent treatments differing responses and rehabilitative potential No particular ideal ventilatory mode What is lung protective strategy in paed? Need to translate theory into practice Preemptive therapy or early rescue Role of adjuncts PH Spontaneous Breaths PL Pressure Support P Synchronized Transitions • Spontaneous breaths at 2 pressure levels • PH transition to PL during expiratory phase PEEP H PEEPHigh Pressure Support Pressure Support P PEEPL Pressure support of SB at PH & PL TH : TL 1:2-3 ratio Preservation of respiratory muscle Better patient-ventilator synchrony • Less sedation, blockage, ?ventilator days Encourages diaphragmatic contractions • Allow gas to enter dependent (ventilation) portion of lung Recruit dependent units without Paw increases V/Q matching Improve OI with less Paw SB at TH allows for further recruitment • Unlike mechanical breaths preference for non-dep part lungs Froese A et al Anesthesiology 41: 242-55 Rehder K et al J Appl Physio 42: 391-402 Haemodynamic effects • Reductions in pleural pressures Improve venous return, renal/splanchnic flow by lowers RAP • Increasing abdominal pressure encourages venous return Pressure High (PH) • Higher of 2 Baseline airway pressure • Oxygenation goal Time High (TH) • Length for which PH is kept Pressure Low (PL) • Set to deliver release volume • CO2 clearance Time Low (TL) • Length for which PL is kept Not new! 1987 Time triggered pressure limited time cycled mode Allow spontaneous during breathing cycle Breathing at 2 levels CPAP - BiPAP Benefits of CPAP in ALI • Improved PV and less WOB Downs JB et al CCM 15: 459-61 Stock CM et al CCM 15: 462-66 Patients with ALI or low compliance • Goal to recruit with PH and avoid de-recruitment during releases PL Airway disease • High peak expiratory flows during release phase Little or no PEEP to resist expiratory flow • Expiration can occur throughout cycle Habashi NM et al CCM 33(3)supp: 228-240 Animals • Lamb in OA ALI Retrospective Martin LD et al Crit Care Med. 1990;18:231 reviews Hales R et al Respir Care 49: 1441 Case reports Foland JA et al Respir Care 46: 1019-23 • Cardiac surgery Jone R et al Respir Care 49: 1414 • Preterm infant with BPD De Carvalho WB et al Rev Assoc Med Bras 46: 166-73 • APRV vs SIMV Hutchison AA et al Abstract 10 REaSoN meeting Warwick 2004 th Crooke C et al Respir Care 49: 1376 N=24 adult severe ARDS APRV+/-SB vs PSV with equal MV and Paw • Effect seen in APRV/SB • Reduce intrapulmonary shunt, Vd • Increase in RVeDV, SV, CI, mixed venous and DO2 • Decrease in PVR, oxygen extraction Putensen C et al AJRCCM 159: 1241-8 Putensen C et al Anesth Int Care 33: 218-22 N=30 ARDS trauma APRV/SB vs PCV(+NMB) weaned with APRV APRV/SB assoc Better compliance, CI, PaO2, DO2 Reduced shunt, O2 extraction • Lower ventilator, intubation and LOS Concerns PCV group 3d treatment with NMB PaO2/FiO2 much lower from baseline Putensen C et al AJRCCM 164(1): 43-9 PRCT n=58 ARDS APRV vs SIMV/PS • Better inspiratory Paw in APRV Varpula T et al Acta Anesth Scand 47(5): 516-24 • PEEP, gas exchange and haemodynamic indices, LOS, mortality similar PRCT PP in SIMV PCV/PS vs APRV n=45 • PP for 6hr at 6hr and 24hr admission according P/F • Pre prone APRV better oxygenation • 1st prone same improvement in P/F • 2nd prone better P/F on APRV • >24hrs to max benefits? Varpula T et al Acta Anesth Scand 47(5): 516-24 APRV vs CMV in ARDS trauma n=30 PRCT • Better gas exchange and haemodynamics • Less sedation Varpula T et al Acta Anesth Scand 2003 • Less ventilator and ICU days APRV vs PCV-IRV ARDS Kaplan LJ, et al. Crit Care 2001; 5(4):221-6 • Similar oxygenation and ventilation • Better haemodynamic CI, DO2, SV • Less sedation needs PRCT uneven randomisation APRV vs CMV vs SIMV post cardiac op n=596 Rathgeber J et al Eur J Anaesth 14: 576-82 • Intubation time 10hr vs 15hr vs 13hr • Less sedation and anaglesia Open lung strategy • • • • Recruitment ripple effect of stablising alveoli Promote airway opening Continuous recruitment manoeuvre with SB Target settings most vent cycle PV relationship above LIP Release tidal breath to clear CO2 without need for positive pressure tidal ventilation Spontaneous breathes Ventilation release phase at expiratory limb PV loop • Open lung TL too short for de-recruitment • Maintain autoPEEP in PL Rimensberger P et al CCM 27: 1946-52 Lower Pk Less WOB, sedation needs Improve oxygenation and able to ventilate Better haemodynamics Limited outcome studies ? Reduce need in HFOV High PH levels with low pleural pressures • High transpulmonary pressures and volutrauma PL at 0 cmH2O may result in large release volume ? Cyclical release and opening of alveoli Titrate TL to autoPEEP need constant adjustment autoPEEP not heterogeneous amongst disease lung Obstructive airway disease Understand the unique features and benefits of „new‟ modes of ventilation in relation to patient lung disease and targets No „Ideal‟ mode of ventilation Combination of modes use Outcome studies ?realistic Retrospective AHRF P/F increased by mean 28.5 OI not changed Kambhampati S et al CCM 40: 12(S)1015 Case reports Krishnan J et al Pediatr Pulmonol 42: 83-8 Schultz TR et al PCCM 2: 243-6 Demirkol D et al Ind J Pediatr 77: 1322-5 Based on ARDSnet low Vt strategy Using SMA clamping and release Induced peritoneal sepsis Ventilated 1hr 10ml/kg Low Vt 6ml/kg PEEP/FiO2 and Pplat <30 APRV Antibiotics given Sacrificed after 48h Histology, BAL, IL-6 APRV group preserved P/F Better lung compliance Surfactant abundance Less pulmonary edema Reduced IL6 Fairly normal lung histology SIRS induced ARDS can be altered with preemptive APRV use Outcome studies vs lung protective ventilation Role in relation to HFOV Sustained mean alv volume allows for gas diffusion and combined with cardiac output enable constant gas diffusion between blood and alveolar compartments Habashi NM et al CCM 33(3)supp: 228-240 ● Release ventilation cycle oxygen rich gas with CO2 rich gas to re-establish diffusive gradients • EELV determined by PL and TL – Artificial airway imposes resistance – Non linear flow dependent resistive load from high lung volume – Resistive pattern is highest at initial phase of TL – Terminate before expiratory load is discharged to keep residual pressure and lung volume – PL recommended b to be 0cmH2O Habashi NM et al CCM 33(3)supp: 228-240 • EELV determined by PL and TL – – – – Artificial airway imposes resistance Non linear flow dependent resistive load from high lung volume Resistive pattern is highest at initial phase of TL Terminate before expiratory load is discharged to keep residual pressure and lung volume – PL recommended b to be 0cmH2O Habashi NM et al CCM 33(3)supp: 228-240 TH >> TL • TH 4-8s TL 0.2-0.8s • 10-20 release breaths per minute PH • match Pplat on CMV or >30cmH2O PL allow release to clear CO2 but prevent de-recruitment by keeping end expiratory volume • 0cmH2O or match expiratory flow terminal 25% autoPEEP • May add PL • 6-8 (11-12) ml/kg IBW Effect 6hours Allow SB with appropriate sedation High PH open lung units at critical opening pressure High TH recruits lung units with long time constants • Decrease in FiO2 • Increase release volume Re-set CO2 goals Avoid over sedation Increase TL Increase PH or decrease TH Reduce PH and PL keeping release volume 6- 8ml/kg • Decrements of 2-3 cmH2O Increase TH to allow more SB • Increments 0.5 to 12-15 Transition to PSV or CPAP/ATC when PH 10-15 cmH2O and PL 5 cmH2O • Concern of PS causing lung over-distension, high transpulmonary pressure, uncoupling of SB Habashi NM et al CCM 33(3)supp: 228-240 TH kept as much of the time as possible for continuous recruitment effect Release tidal breath to clear CO2 without need for positive pressure tidal ventilation Allowance of SB at all cycles Prevent de-recruitment by manipulating TL and PL to maintain EELV n=18 APRV vs VCIRV Sydow et al AJRCCM 149: 1550-6 Better gas exchange and CP mechanics n=50 APRV vs CMV Better oxygenation Rasanen et al AJRCCM 1991: 1234-41 Lang n=18 APRV vs CV Dart et al n=60 trauma ALI retrospective APRV vs PCVSIMV • Lower Paw and better P/F Dart BWt et al J Trauma 59: 71-6 1991 APRV vs CPAP vs CMV in OA ALI sheep model 1993 n=15 APRV vs SIMV ALI postop • similar Martin LD et al CCM 19: 373-8 Davis K et al Arch Surg 128: 1348-52 Artificial CMV (IPPV) CMV (CPPV) IMV, PSV, BIPAP APRV Spontaneous T Piece SBT HFOV CPAP Oxygenation Level IPPV: Intermittent positive pressure ventilation PSV: Pressure support ventilation CPPV: Continuous positive pressure ventilation IMV: Intermittent mandatory ventilation BIPAP: Biphasic positive airway pressure APRV: Airway pressure release ventilation CPAP: Continuous positive airway pressure Group of techniques using RR>>>CMV • HFPPV Less Vt • HFJV • HFOV Sub Vd Slutsky AS et al Am Rev Resp Dis 138: 1175-183 60-120bpm 400bpm 1000-2000bpm Volume To target “injury free” zone HFOV Zone of Overdistention Barotrauma Alveolar stretch Pulmonary edema Safe window Zone of Derecruitment and atelectasis CMV Biotrauma Epithelial injury Pressure Slutsky & Drazen NEJM 347: 630-1 Pillow JJ et al CCM 33(Supp): S135-141 Premature <30wks RDS HFOV vs PSV/VG • PRCT n=25 • Pre surfactant, 6-18hrs, 1-2d, pre-extubation bronchial measurements of IL-1β, IL-8, IL-10 • Lower levels in HFOV group HFOV associated reduction in lung inflammation in preterms RDS vs PSV/VG Dani C et al Paed Pulmono 41(3) 242-49 HFOV as rescue therapy Recruitment before HFOV Improve oxygen indices HFOV Arnold JH et al CCM 21: 272-8 Rosenberg RB et al Chest 104: 1216-21 vs CMV with crossover to HFOV PRCT N=70 DAD Arnold JH et al CCM 22: 1530-9 Open lung concept Less O2 supp at 30d in HFOV group Survival poorer in crossover to HFOV group Retrospective ARDS post CS • Exclude uncorrected shunt • Failed CMV • N=84 ARDS N=64 HFOV • OI <13 Pplat >28 pH <7.2 CMV 11d • OI improved More in survivors • 40% mortality MOF Respiratory failure Shengli L et al Pediatr Cardio 34: 1382-8 Retrospective n=23 Age 10yr+/-10yrs • Mean OI 36 P/F 109 • Started 4.7d postburn CMV • Improve oxygenation OI & P/F may take up to 24h Inhalational injury poor response Responders n=16 non responders n=5 P/F 207 vs 78 (responder improve by D3) TBSA 68 vs 42% Mortality 29% (responder 60% non responder 20%) Greathouse ST et al J Burns Care Res 33:425-35 AHRF HFOV;CMV;+iNO P/F in HFOV+iNO better at T4 T8hrs 24hr HFOV gp better oxygenation cf CMV Dobyns EL et al CCM 30: 2425 PPHN n=205 Failed CMV+iNO & HFOV • Started on HFOV+iNO Kinsella JP et al J Pediatr 131: 55-62 Retrospective observational study n=53 single center • DAD, SAD Rescue therapy HFOV • Noted higher OI in DAD >35 Survival 56% DAD 88% SAD Overall 64% Slee-Wijffels FY et al Crit Care 9(3): R274-9 • N= 23 adult ARDS (pneumonia, burn, BMT) • Apache 21=/- 7 LIS 3.4+/-0.6 • Rescue HFOV failing CMV • • • • • PIP (cmH2O) 37 + 4 Paw 24 + 3 PEEP 13.8 + 2.4 PaO2/FiO2 (mm Hg) 100 + 41 OI 33 + 20 Mehta et al. CCM 2001;1360-1369 • Outcomes • ICU Survival 7/23 (30%) • Burns 0/5 • 11 withdraw, 2 technicla problems • Nonburn patients 7/17 (41%) • Prior Vent Days 6.1 + 5.6 days – Non Survivors 7.8 + 5.8 days – Survivors 1.6 + 1.2 days • Prospective observational N=156 • Severe ARDS (P/F 91 +/- 48) Mean OI 31) • Improvement in oxygen indices • Almost quarter HFOV discontinued • 22% pneumothroax • 62% mortality • Predictors Age, APACHE pH at initiation Duration of CMV Mehta S et al Chest 126: 518-27 Use of HFOV paeds AHRF rescue failed CMV • PCT n=20 (pneumonia, sepsis, poisoning, pul • • • • • edema) Alv-artO2 578torr OI 26 CMV 15.5hr (3.3=/-43hr) Improved FiO2 and PCO2 1hr to 24 hr Alv-artO2 and OI improve 1,4,12 hr 75% survival Jaballah NB et al PCCM 7(4):362-367 • N=10 severe paeds ARDS (P/F 200) DAD with • • • • • • sepsis CMV 7ml/kg Pplat < 30cmH2O Permissive Hypercapnia OI 13-35 (median 15) Duration of CMV 3-48hrs (median 4 hrs) Open lung concept with recruitment 80% survival Jaballah NB et al Eur J Paed 164: 17-21 HFOV (recruitment) vs PCV (6-10ml/kg) MOAT PRCT MCT early ARDS (P/F = 200 PEEP 10) HFOV Paw 45 cmH2O Dp 90 Hz 3-5 Use open lung strategies and permissive hypercapnia Convert to CMV Paw 24cmH2O FiO2 0.5 SaO2 88% Improve oxygen indices on HFOV Survivors predicted by improving OI over 72hrs 30d mortality 52% (CMV) vs 37% (HFOV) Concerns Safety study and not powered for difference Days on CV pre HFO (2.7+/-2.7) vs PCV (4.4d+/-7.8) Vt PCV 10.2ml/kg IBW and Pplat 38+/-8 cmH2O Derak S et al AJRCCM 166: 801-8 PRCT crossover HFOV vs CV Vt 8-9ml/kg N=61 adult ARDS (stop 3yrs) No difference in mortality and morbidity Bollen CW et al Crit Care 9: R430-39 • Post hoc benefit sicker patients (higher OI) on HFOV Prone positioning Demory Didier et al CCM 35(1): 106-11 • N=43 adult ARDS Prospective Comparative Lung protective CMV 12hrs prone, then 12hr supine Lung protective CMV 12hrs supine, then HFOV supine 12hr Lung protective CMV 12hrs prone, then HFOV supine 12hr • P/F and intrapulmonary shunt better in last gp • HFOV maintained benefits of PP when patient supine Tracheal gas insufflations improve alveolar ventilation in HFOV • PR crossover trial n=14 ARDS <3d OI 23 • HFOV with TGI (6l/min 1hr) and without 1hr for 1d Session revered for 1d and 4 RM CMV ARDSNet before and after HFOV sessions • HFO-TGI better P/F , OI, intrapulmonary shunt and mixed venous • Haemodynamics, respiratory mechanics unchanged Mentzelopoulos S et al CCM 35(6): 1500-8 RCT HFOV, CMV with iNO n=108 pediatric AHRF HFOV plus iNO (n=14) HFOV alone (n=12) CMV plus iNO (n=35) CMV alone (n=38) Posthoc P/F ratio greatest in the HFOV plus iNO at 4 and 12 hrs • HFOV plus iNO and HFOV gp greater P/F ratio improvement at 24hrs • Lung recruitment by HFOV enhances iNO effects Dobyns et al CCM 2002;30(11):2425 Type Piston Diaphragm – MagnetCoil Spinning Jet Ventilator New Calliopeα VIASYS / Drager/ Sensor Medics SLE Oscillation created by a piston from the expiratory side. Easy HFO settings. All parameters are independent. Amplitude can be finely set by Features changing stroke volume in increments as small as 0.2ml. PCV and PSV available. Easy sterilization by detaching piston unit. Oscillation source is a speaker system. ● ● Weaker power. Oscillation wave becomes mixed with noise, unstable. ● Parameters cannot be set independently. Oscillation source from a jet flow with a spinning valve at the expiratory port. ● ● Weaker power. Settings cannot be set independently. ● ● It is likely to be affected by the compliance of the breathing circuit. ● HFO Setting Ventilator Calliopeα Babylog Stephanie SM3100A SLE5000 SLE2000HFO Ventilation Mode HFO, IMV, CPAP CPAP+HFO, IMV+HFO CPAP+HFO, IMV+HFO HFO CPAP+HFO, IMV+HFO, HFO CPAP+HFO, IMV+HFO MAP 3~40 cm H2O 5~25cmH2O 0~35cmH2O 0~40cmH2O Frequency 5~17Hz 5~20Hz 5~15Hz 3 ~ 15Hz 3~20Hz 3~20Hz Stroke volume 0~80 ml x x % x x SI Manual ○ ○ x x x 0~35mbar 3 ~ 45 cm H2O VILI is major concern in ARDS/ALI • HFOV would be ideal Studies suggesting benefit esp early use Outcome studies disappointing Adjunct uses To adjust HFOV, which machines to use How to apply early – Who are responders? Lung protective strategy in HFOV • Recruitment What is best surrogate marker • OI, P/F? Role of adjuncts therapies • Aerosols, iNO Time for new ventilator? OSCILLATE – Canadian Critical Care Trials Group Understand the unique features and benefits of „new‟ modes of ventilation in relation to patient lung disease and targets No „Ideal‟ mode of ventilation Combination of modes use Outcome studies ?realistic Compare weaning of infant recovering from ARDS treated with HFOV • N=10 NAVA & n=20 PSV historical control • NAVA Lower HR & MAP ? Comfortable P/F decreased less Lower PCO2 Ppeak Higher MV COMFORT score better Piastra M et al PCCM 15(4S) no 47 Retrospective ARHC SCT n=31 burns • Failed CMV (HFOV 3; PC-CMV 15; PRVC 16) 1d OI 18.7 P/F 131.5 • Lower Ppk similar MAP post HFPV for 48h OI 18.7 11/7 12h PCO2 8455 6h MAP 3830 • Airleak Haemodynamic Vasopressor unchanged • Ventilated mean 4d • Mortality 16.1% • N=3 failed HFPV for P-V dyssynchrony Rizkalla NA et al J Crit Care 314: e1-7 HFOV 1 ECMO 2 N=64 paediatric burn SCT • CMV or HFPV • Improved oxygenation at lower Ppk • Mortality ARDS evolution sepsis not different Carman B et al J Burn Care Rehabil 23: 444-8 Used in adult and children smoke inhalational and polytrauma Salim A et al CCM 33(3S): S241-5 Cioff Jr WG et al Ann Surg 213: 575-80 Cortiella J et al J Burn Care Rehabil 20: 232-5 Rue III RW et al Ann Surg 128: 772-8 Reper P et al Burns 28: 503-8 Retropsective n=60 early ARF SCT • CMV; NIPPV; BCV • Oxygenation, Ventilation & vital signs improve in all 3 groups • Duration CMV 182.3h; NIPPV 80.hd; BCV 64.2h • LOS 17.7d CMV; 19d NIPPV; 10d BCV
© Copyright 2026 Paperzz