1/21
Hierarchical
Polynomial-Bases
&
Sparse Grids
grid: Gitter <> сéтка
sparse: spärlich, dünn <> рéдкий
1. Introduction
1.1 A few properties of function spaces
V be a function space and fi , f , g V
- V is a infinite dimensional vector space
Let
- ( f g )( x) f ( x) g ( x) and ( f )( x) f ( x)
- span{ fi } is a subspace of V
A few examples:
n
- C (Ω , R) is the space of n times
d
differentiable functions from R to R
2
n
- span{1,x,x ,…,x }
2/21
3/21
1.2 The tensor product
Let f and g be two functions, then the tensor
product f g is defined by
( f g )( x, y) : f ( x) g ( y)
So if we have the function φ for example:
1 | x |
( x) :
0
if x 1 , 1
otherwise
the tensor product : is
( x, y) : ( x) ( y)
otherwise: sonst <> в другой случае
→ Image
→ Image
4/21
1.3 Norms in function spaces
Sometimes we want to measure the “length” of
n
a function. In C (Ω ,R) we will look at three
different norms:
|| f || : sup{| f ( x)| | x }
|| f ||q : q
| f q ( x) |dx q 1
1/ 2
2
|| f || E : f ( x ) x j
j1
d
(energy norm)
d 1
|| f ' ||2
5/21
2. The hierarchical basis
2.1 A “simple” function space
On page 3 we have seen a function φ. Now
we will define functions, which are closely
related to φ:
n, i ( x) : (2n x i)
i 1, , 2n 1
→ Image
These are basis functions of
n
Vn : { i n,i | i R }
i 1
span { n,i | i 1,,2 n 1}
→ Image
6/21
2.2 A new basis
We define:
and get
Wk : span{ k,i | odd i}
Vn Wk
kn
→ Image
If we take now these basis functions of Wk
we get the hierarchical basis of Vn
Applying the tensor product to these functions,
we get a hierarchical basis of higher
dimensional spaces Vn,d of dimension d.
→ Image
odd: ungerade <> нечётный
For all basis functions φk,i the following
equations hold:
|| k,i || 1
1/q
2
2 k/q
|| k,i ||q
q 1
|| k,i || E 2 2 k/2
|| f || || f ' ||
2
E
f ' ( x) dx
2
equation: Gleichung <> уравнение
1/2
7/21
8/21
2.3 Approximation
Now we want to approximate a function f in
C([0,1], R) with f(0) = f(1) = 0 by a function
in Vn.
2 n 1
n
f un i n,i
i 1
k 1 i 1.. 2 k 1
i odd
n
k,i
k,i wk
k 1
i f (i / 2 n ) (function values)
and
k,i f (i / 2 ) 1/2 f ((i 1) / 2 ) 1/2 f ((i 1) / 2 )
k
k
(hierarchical surplus)
surplus: Überschuss <> избыток
k
→ Example
9/21
With the help of the integral representation of
the coefficients
k, i 2
( k 1)
k, i ( x) f ' ' ( x) dx
we get the following estimates:
| k,i | 1/2 2
2k
| k,i | 1/6 2
|| f ' ' ||
( 3/2)k
|| f ' ' |supp( k ,i ) ||2
and from this
||wk || / 2 / E 4 || f ' ' || / 2
k
estimate: Abschätzung <> оценка
3. Sparse grids
3.1 Multi-indices
For multi-indices
, N 0 we define:
d
(1 1 , , d d )
( 1 , , d )
1
d
2 : (2 , , 2 )
def
1 j d : j j
d
| |1: j
j1
and | | : max j
1 j d
10/21
11/21
3.2 Grids
A d-dimensional grid can be written as a multiindex m N d with mesh size
h m : 2-m (2- m 1 , , 2- m d )
The grid points are
→ Example
x m,i : (x m1 ,i1 , , x md ,id ) : i h m 0 i 2m
Now we can assign every xm,i a function
d
m,i (x) : m , i ( x j ) with
j1
j
j
m , i ( x j ) : (2 x j i j )
mj
j
j
mesh: Masche <> петля
i j 1, , 2 1
mj
12/21
3.3 Curse of dimensionality
Wl : span {l ,i | 1 i 2 1, i j odd for all 1 j d}
l
()
n
and V
:
Wl
|l| n
The dimension of Vn( ) is
()
n
|V
nd
d
n
| (2 1) O(2 ) O(h )
n
d
But as we seen before
||wm || / 2 (d) 4
|l|1
|| f ' ' || / 2 O(h )
2
n
and we get
|| f un( ) || / 2 (d ) 4 n || f ' ' || / 2 O(hn2 )
curse: Fluch <> проклятие
13/21
3.4 The “solution”
We search for subspaces Wl where the quotient
b(l) benefit
c(l)
cost
is as big as possible
b(l) : max{|| wl ||2 } → Image
c(l) :| Wl | 2|l 1|1
V
( opt)
n
V :
(1)
n
Wl
|l| n d 1
and
1
n 1
d 1 i
1
d 1
|V | 2
O
(
h
|
log
h
|
)
n
2 n
d 1
i 0
(1)
n
i
d 1
n d 1 n
2
d 1
|| f u || / 2 (d)
4
||
f
'
'
||
O
(
h
n
)
/2
n
i
i 0
(1)
n
benefit: Nutzen <> польза
14/21
There exists also an optimal choice of grids for
the energy-norm. We get the function space
(E)
n
V
:
|l|1 1/5log2 (
j1
d
lj
4 ) ( n d 1) 1/5log2 ( 4 n 4d 4 )
Wl
and the estimates
| Vn( E ) |
|| f u
(E)
n
2 n d/2 e d
||E (d ) 2 || f ' ' || / 2 O(h n )
n
15/21
3.5 e-complexity
In Vn( ) we get
N / 2 (e ) O(e d/2 )
N E (e ) O(e d )
e / 2 ( N ) O( N 2/d )
e E ( N ) O( N 1/d )
(1)
n
In V
In V
we get
N E (e ) O(e )
1
we get
N / 2 (e ) O(e
(E)
n
1/2
| log 2 e |
3/2(d -1)
)
N E (e ) O(e 1 | log 2 e |(d -1) )
e / 2 ( N ) O( N 2 | log 2 N |3(d 1) )
e E ( N ) O( N 1 | log 2 N |(d 1) )
e E ( N ) O( N 1 )
16/21
4. Higher-order polynomials
4.1 Construction
Now we want to generalize the piecewise linear
basis functions to polynomials of arbitrary degree
d
p : ( p1 , , pd ) N . We use the tensor product:
d
(p j )
(p )
l,i ( x ) : l j ,i j ( x j )
with
(p j )
l j ,i j
→ Image
j1
( x j ) : [ xl j ,i j hl j , xl j ,i j hl j ] R
To determine this polynomial we need pj+1 points.
For that we have to look at the hierarchical ancestors.
→ Example
arbitrary: beliebig <> любой
ancestor: Vorfahr <> предок
17/21
(p j )
l j ,i j
is now defined as the Lagrangian interpolation
polynomial with the following properties:
(p j )
l j ,i j
and
( xl j ,i j ) 1,
(p j )
l j ,i j
(p j )
l j ,i j
( xl j ,i j hl j ) 0
is zero for the pj-2 next ancestors.
(p j )
l j ,i j ( x j ) for x j [ xl j ,i j hl j , xl j ,i j hl j ]
(p j )
l j ,i j ( x j ) :
otherwise
0
→ Example
This scheme is not correct for the linear basis
functions, as they are only piecewise linear
and need three definition points.
18/21
4.2 Estimates
For the basis polynomials we get:
|| (l,pi ) || 1.117 d
|| (l,pi ) ||q 1.117 d 2d/q 2 |l|1 /q
q 1
||
(p)
l,i
1/2
5
2l j
|l|1 /2
||E 3.257 2
2
2
j1
d/2
We define a constant-function
d
p j ( p j1)/2
2
(p) :
j1 ( p j 1)!
d
19/21
The estimates for the hierarchical surplus are:
|
(p )
l,i
| 1/2 (p) 2|l(p 1)|1 || D (p 1) f ||
d
| l,(ip ) | 1/6 (p) 2|l(p 1)|1 2|l|1 /2 || D (p 1) f |supp(l,i ) ||2
d/2
with Wl (p ) : span{l,(pi ) | i j odd} as before
we get for wl(p ) Wl (p )
|| wl(p ) || 0.5585d (p) 2 |l(p 1)|1 || D (p 1) f ||
|| wl(p ) ||2 1.117 d 1/3 (p) 2 |l(p 1)|1 || D (p 1) f ||2
d/2
d
2l j
|l( p 1)|1
(p )
|| wl ||E (d) (p) 2
2 || D (p 1) f || / 2
j1
20/21
But as the costs do not change:
| Wl (p )| | Wl | 2|l 1|1
( opt )
the
n
we can define V
Vn( p,1) :
Wl (p )
|l| n d 1
same as before
for p 1 and
1
( p ,1)
n
For a function out of V
the order of
approximation is given by
|| f u
( p ,1)
n
|| f u
( p ,1)
n
p 1
n
|| / 2 O(h
p 1
n
||E O(h
)
n
d 1
)
Vn(1,1) : Vn(1)
21/21
4.3 ε- complexities
( p ,1)
we
n
For V
N
(p)
/2
get
(e ) O(e
-
1
p 1
| log 2 e |
p2
( d 1)
p 1
)
N E( p ) (e ) O(e -1/p | log 2 e |( d 1) )
e
(p)
/2
( N ) O( N
( p 1)
| log 2 N |
e ( N ) O( N | log 2 N |
(p)
E
p
( p 2)(d 1)
p(d 1)
)
)
( p,E )
V
For n
we get
N (e ) O(e
(p)
E
1/p
) and e ( N ) O( N )
(p)
E
p
The End
Image1
Bild1
Image2
Bild2
Image3
n= 3
n= 1 and n= 2
φ3,5
φ1,1
Bild3
Bild3
Image4
Bild4
This is an example for a function in V3
Image5
natural hierarchical basis
W1
Bild5
φ1,1
W2
W3
nodal point basis
node: Knoten <> узел
φ2,1
φ2,3
Image6
Bild6
Example1
k ,i f (i / 2k ) 1/2 ( f ((i 1) / 2k ) f ((i 1) / 2k ))
f ( x) x (1 x)
Example2
l=(3,2)
hl = (1/8,1/4)
Image7
b(l ) O (16
|l|1
)
W(1,1)
c(l ) O (2|l|1 )
b(l )
O (32 |l|1 )
c(l )
W(1,2)
W(2,1)
Image8
Example3
0
1
Example4
© Copyright 2026 Paperzz