Chapter section 8.1.1 Topic: quadratic equations Vocabulary: • Generic rectangle – is a distribution box that is filled in. • Neg times Neg is Pos Pos times Neg is Neg Distribution Boxes Example One Instructions: Simplify (2a 6)( a 3) a -3 2a 2a² +6 +6a -6a -18 2a 6a 6a 18 2 2a 18 2 Example Two Instructions: Solve the generic rectangle puzzle +a +5 +a +7 +a +a² +5a +a +a² +6 +6a +30 +4 +4a +28 +a +3 +7a +a +9 +a +a² +3a +a +a² +9a +1 +a +3 -2 -2a -18 Classwork One Instructions: Solve the generic rectangle puzzle +a +3 +a +1 +a +a² +3a +a +a² +a +2 +2a +6 +5 +5a +5 +a +7 +a +4 +a +a² +7a +a +a² +4a +9 +9a +63 -6 -6a -24 Example Three Instructions: Solve the generic rectangle puzzle +a -6 +a +7 -a -a² +6a +a +a² +6 +6a -36 +4 +4a +28 +a -4 +7a +a +5 +a +a² -4a -a -a² -5a -2 -2a +8 -2 -2a -10 Classwork Two. Instructions: Solve the generic rectangle puzzle +a +4 +a -3 +a +a² +4a +a +a² -3a +8 +8a +32 +3 +3a -9 +a -6 -a -2 -a -a² +6a -a +a² +2a -3 -3a +18 +9 -9a -18 Example Four Instructions: Solve the generic rectangle puzzle +a +4 +2a +2a² +7 +8a +7a +28 +2a +3 +a +2a² +3a +2 +4a +6 +a +5 +3a +3a² +7 +15a +7a +35 +2a -3 -2a -4a² +6a -6 -12a +18 Classwork Three Instructions: Solve the generic rectangle puzzle +a +5 +3a +3a² +4 +3a +8 +15a +a +3a² +8a +4a +20 +2 +6a +16 +2a +4 +3a +6a² +12a +3a +3 +3a 9a² +9a +4 +4 +8a +16 +12a +12 Example Five Instructions: Solve the generic rectangle puzzle -a +6 +2a -2a² -7 +7a +12a -42 -2a -4 +a -2a² -3 +6a +12 -4a -2a +6 +3a -6a² +18a -5 +10a -30 -2a +8 +3a -6a² +24a +2 -4a +16 Classwork Four Instructions: Solve the generic rectangle puzzle -a +1 +2a -2a² -3 +3a +2a -3 -2a +1 +3a -6a² +3a -1 -2a -5 +a -2a² -5 +10a +25 -5a +2a -1 -a +1 +3a -3a² +4 -4a +3a +4 Example Six Instructions: Test the generic rectangle puzzle -2a² +2a +2a -2a² -2 -5a +10a +25 (+2)(a)(+2)(a) = 4a² (-2)(a²)(-2) = 4a² (+10)(a)(-5)(a) = -50a² (-2)(a²)(+25) = -50a² Classwork Five Instructions: Test the generic rectangle puzzle +3a² +15a +60a² +54a² +4a +20 +6a² +12a +6a +12 +3a² +9a +6a +18 +72a² +108a² 9a² +9a +12a +12 Chapter section 8.1.1 Topic: quadratic equations Vocabulary: (a 1)( a 2) 0 So either a+1 is zero a 1 0 or or a+2 is zero a20 Example One Instructions: Factor the quadratic. a 5a 6 (a __)(a __) 2 (a 1)( a 6) -1 +6 test 1 x -6 1 - 6 -1 x 6 6 - 1 Classwork Four Instructions: Factor the quadratic. a 7a 8 (a __)(a __) 2 1 and -8 a 6a 40 (a __)(a __) 10 and -4 a 8a 15 (a __)(a __) -3 and -5 a 8a 16 (a __)(a __) -4 and -4 2 2 2 Example Two: • Instructions: Solve (a 1)( a 6) 0 Has two answers: If (a-1) is zero a 1 0 a 1 0 +1 +1 a 1 or If (a+6) is zero a6 0 a6 0 -6 -6 a 6 Example Three Instructions: Solve the quadratic. a 6a 16 (a __)( a __) 2 (a 2)( a 8) 0 +2 -8 test a20 -2 a 2 -2 a 8 0 +8 +8 a 8 -2 x 8 8 - 2 2 x -8 2 - 8 Classwork Four Instructions: Solve the quadratic. a 12a 18 0 -3 and -6 a 5a 14 0 -2 and 7 a 7a 18 0 2 and -9 2 2 2 a 6a 16 0 2 2 and -8
© Copyright 2026 Paperzz