Hindawi Publishing Corporation International Journal of Analysis Volume 2013, Article ID 312685, 10 pages http://dx.doi.org/10.1155/2013/312685 Research Article On Common Random Fixed Points of a New Iteration with Errors for Nonself Asymptotically Quasi-Nonexpansive Type Random Mappings R. A. Rashwan,1 P. K. Jhade,2 and Dhekra Mohammed Al-Baqeri1 1 2 Department of Mathematics, University of Assiut, Assiut 71516, Egypt Department of Mathematics, NRI Institute of Information Science & Technology, Bhopal, Madhya Pradesh 462021, India Correspondence should be addressed to P. K. Jhade; [email protected] Received 1 November 2012; Accepted 11 March 2013 Academic Editor: Stefan Kunis Copyright © 2013 R. A. Rashwan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We prove some strong convergence of a new random iterative scheme with errors to common random fixed points for three and then đ nonself asymptotically quasi-nonexpansive-type random mappings in a real separable Banach space. Our results extend and improve the recent results in Kiziltunc, 2011, Thianwan, 2008, Deng et al., 2012, and Zhou and Wang, 2007 as well as many others. 1. Introduction and Preliminaries The theory of random operators is an important branch of probabilistic analysis which plays a key role in many applied areas. The study of random fixed points forms a central topic in this area. Research of this direction was initiated by Prague School of Probabilistic in connection with random operator theory [1â3]. Random fixed point theory has attracted much attention in recent times since the publication of the survey article by Bharucha-Reid [4] in 1976, in which the stochastic versions of some well-known fixed point theorems were proved. A lot of efforts have been devoted to random fixed point theory and applications (e.g. see [5â10] and many others). Let (Ί, ÎŁ) be a measurable space, đś a nonempty subset of a separable Banach space đ¸. A mapping đ : Ί â đś is called measurable if đâ1 (đľ â đś) â ÎŁ for every Borel subset đľ of đ¸. A mapping đ : Ί × đś â đś is said to be random mapping if for each fixed đĽ â đś, the mapping đ(â , đĽ) : Ί â đś is measurable. A measurable mapping đ : Ί â đś is called a random fixed point of the random mapping đ : Ί × đś â đś if đ(đ¤, đ(đ¤)) = đ(đ¤) for each đ¤ â Ί. Throughout this paper, we denote the set of all random fixed points of random mapping đ by đ đš(đ) and by đđ (đ¤, đĽ) for the đth iterate đ(đ¤, đ(, . . . đ(đ¤, đĽ))) of đ. The class of asymptotically nonexpansive mappings is a natural generalization of the important class of nonexpansive mappings. Goebel and Kirk [11] proved that if đś is a nonempty closed and bounded subset of a uniformly convex Banach space, then every asymptotically nonexpansive self-mapping has a fixed point. Iterative techniques for asymptotically nonexpansive selfmappings in Banach spaces including Mann type and Ishikawa type iteration processes have been studied extensively by various authors (e.g. see [12â15]). The strong and weak convergences of the sequence of Mann iterates to a fixed point of quasi-nonexpansive mappings were studied by Petryshyn and Williamson [16]. Subsequently, the convergence of Ishikawa iterates of quasinonexpansive mappings in Banach spaces were discussed by Ghosh and Debnath [17]. The previous results and some obtained necessary and sufficient conditions for Ishikawa iterative sequence to converge a fixed point for asymptotically quasi-nonexpansive mappings were extended by Liu [18, 19]. In 2000, Noor [20] introduced a three-step iterative scheme and studied the approximate solutions of variational inclusion in Hilbert spaces. Xu and Noor [21] introduced and studied a three-step iterative scheme for asymptotically nonexpansive mappings, and they proved weak and strong convergences theorems for asymptotically nonexpansive mappings in Banach spaces. In 2005, Suantai [22] defined 2 International Journal of Analysis a new three-step iteration, which is an extension of Noor iterations, and gave some weak and strong convergences theorems of such iterations for asymptotically nonexpansive mappings in uniformly convex Banach spaces. For nonself nonexpansive mappings, some authors (e.g., see [23â27]) have studied the strong and weak convergences theorems in Hilbert space or uniformly convex Banach spaces. A subset đś of đ¸ is said to be a retract of đ¸ if there exists a continuous map đ : đ¸ â đś such that đđĽ = đĽ for all đĽ â đś. Every closed convex subset of uniformly convex Banach space is a retract. A map đ : đ¸ â đ¸ is a retraction if đ2 = đ. It follows that if a map đ is a retraction, then đđŚ = đŚ for all đŚ in the range of đ. The concept of nonself asymptotically nonexpansive mappings was introduced by Chidume et al. [28] in 2003 as the generalization of asymptotically nonexpansive selfmappings. They studied the following iteration process: đĽ1 â đś, đĽđ+1 = đ ((1 â đźđ ) đĽđ + đźđ đ(đđ) đâ1 đĽđ ) , đâ1 đâ1 đŚđ = đ ((1 â đ˝đ ) đĽđ + đ˝đ đ2 (đđ2 ) đĽđ ) , (4) nonself asymptotically nonexpansive-type random mapping if óľŠ óľŠ2 lim sup { sup {óľŠóľŠóľŠóľŠđ(đđ)đâ1 (đ¤, đĽ) â đ(đđ)đâ1 (đ¤, đŚ)óľŠóľŠóľŠóľŠ đââ đĽ,đŚâđś (5) óľŠ2 óľŠ âóľŠóľŠóľŠđĽ â đŚóľŠóľŠóľŠ } } ⤠0, đŚđ ) , đĽ1 â đś, đ ⼠1, (2) where đ1 , đ2 : đś â đ¸ are asymptotically nonexpansive nonself mappings and {đźđ }, {đ˝đ } are real sequences in [0, 1). Now, we introduce the following concepts for nonself mappings Definition 1 (see [28, 30, 31]). Let đś be a nonempty subset of a real separable Banach space and đ : Ί × đś â đ¸ a nonself random mapping. Then, đ is said to be (1) nonexpansive random operator if for arbitrary đĽ, đŚ â đś, âđ(đ¤, đĽ) â đ(đ¤, đŚ)â ⤠âđĽ â đŚâ, for all đ¤ â Ί; (2) nonself asymptotically nonexpansive random mapping if there exists a sequence of measurable functions đđ (đ¤) : Ί â [1, â) with limđ â â đđ (đ¤) = 1 for each đ¤ â Ί such that for arbitrary đĽ, đŚ â đś, óľŠ óľŠóľŠ óľŠóľŠđ(đđ)đâ1 (đ¤, đĽ) â đ(đđ)đâ1 (đ¤, đŚ)óľŠóľŠóľŠ óľŠ óľŠ (3) óľŠóľŠ óľŠóľŠ ⤠đđ (đ¤) óľŠóľŠđĽ â đŚóľŠóľŠ , âđ¤ â Ί, đ ⼠1; (3) nonself asymptotically quasi-nonexpansive random mapping if đ đš(đ) ≠ đ and there exists a sequence of measurable functions đđ (đ¤) : Ί â [1, â) with limđ â â đđ (đ¤) = 1 for each đ¤ â Ί such that óľŠ óľŠóľŠ óľŠóľŠđ(đđ)đâ1 (đ¤, đ (đ¤)) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ (4) óľŠóľŠ óľŠóľŠ ⤠đđ (đ¤) óľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠ , âđ¤ â Ί, đ ⼠1, âđ¤ â Ί, đ ⼠1; (5) Nonself asymptotically quasi-nonexpansive-type random mapping if đ đš(đ) ≠ đ, and óľŠ óľŠ2 lim sup { sup {óľŠóľŠóľŠóľŠđ(đđ)đâ1 (đ¤, đ(đ¤)) â đ(đ¤)óľŠóľŠóľŠóľŠ đââ đ(đ¤)âđš óľŠ2 óľŠ âóľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ } } ⤠0, (1) where đ : đś â đ¸ is an asymptotically nonexpansive nonself mapping, {đźđ } is a real sequence in (0, 1), and đ is a nonexpansive retraction from đ¸ to đś. Wang [29] generalized the result of Chidume et al. [28] and got some new results. He defined and studied the following iteration process: đĽđ+1 = đ ((1 â đźđ ) đĽđ + đźđ đ1 (đđ1 ) where đ(đ¤) : Ί â đś is a random fixed point of đ and đ(đ¤) : Ί â đś is any measurable mapping; (6) âđ¤ â Ί, đ ⼠1, where đ(đ¤) : Ί â đś is a random fixed point of đ and đ(đ¤) : Ί â đś is any measurable mapping. Remark 2. (1) If đ : Ί × đś â đ¸ is a nonself asymptotically nonexpansive random mapping, then đ is a nonself asymptotically nonexpansive-type random mapping. (2) If đ đš(đ) ≠ đ and đ : Ί × đś â đ¸ is a nonself asymptotically quasi-nonexpansive random mapping, then đ is a nonself asymptotically quasi-nonexpansive-type random mapping. (3) If đ đš(đ) ≠ đ and đ : Ί × đś â đ¸ is a nonself asymptotically nonexpansive-type random mapping, then đ is a nonself asymptotically quasi-nonexpansive-type random mapping. Remark 3. Observe that for any measurable mapping đ(đ¤) : Ί â đś and đ(đ¤) â đš, we have óľŠ óľŠ2 lim sup { sup {óľŠóľŠóľŠóľŠđ(đđ)đâ1 (đ¤, đ(đ¤)) â đ(đ¤)óľŠóľŠóľŠóľŠ đââ đ(đ¤)âđš (7) óľŠ2 óľŠ âóľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ } } ⤠0, which implies óľŠ óľŠ lim sup { sup {(óľŠóľŠóľŠóľŠđ(đđ)đâ1 (đ¤, đ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ đââ đ(đ¤)âđš óľŠ óľŠ â óľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ ) óľŠ óľŠ × (óľŠóľŠóľŠóľŠđ(đđ)đâ1 (đ¤, đ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ + óľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ ) } } ⤠0. (8) International Journal of Analysis 3 Therefore, The iterative scheme is defined as follows: óľŠ óľŠ lim sup { sup {(óľŠóľŠóľŠóľŠđ(đđ)đâ1 (đ¤, đ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ đââ đ(đ¤)âđš (9) In [25], Shahzad studied the following iterative sequences: đĽ1 â đś, đ ⼠1, đ đ đ đ đ đŚđ = đźđ2 đĽđ + đ˝đ2 (đđ1 ) đ§đ + đžđ2 (đđ2 ) đ§đ , óľŠ óľŠ â óľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ ) } } ⤠0. đĽđ+1 = đ ((1 â đźđ ) đĽđ + đźđ đđ [(1 â đ˝đ ) đĽđ + đ˝đ đđĽđ ]) , đ đĽđ+1 = đźđ1 đĽđ + đ˝đ1 (đđ1 ) đŚđ + đžđ1 (đđ2 ) đŚđ , (10) where đ : đś â đ¸ is a nonexpansive nonself mapping, đś is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space đ¸ with đ being a nonexpansive retraction from đ¸ to đś, and {đźđ }, {đ˝đ } are real sequences in [0, 1). Recently, Thianwan [32] generalized the iteration process (10) as follows: đ§đ = đźđ3 đĽđ + đ˝đ3 (đđ1 ) đĽđ + đžđ3 (đđ2 ) đĽđ , where {đźđđ }, {đ˝đđ }, {đžđđ } (đ = 1, 2, 3) are appropriate sequences in [đ, 1 â đ] for some đ â (0, 1) satisfying đźđđ + đ˝đđ + đžđđ = 1 (đ = 1, 2, 3). For random operators, Beg and Abbas [30] studied the different random iterative algorithms for weakly contractive and asymptotically nonexpansive random operators on arbitrary Banach space. They also established convergence of an implicit random iterative process to a common fixed point for a finite family of asymptotically quasi-nonexpansive operators. Plubtieng et al. [35, 36] studied weak and strong convergences theorems for a modified random Noor iterative scheme with errors for three asymptotically nonexpansive self-mappings in Banach space defined as follows: đđ+1 (đ¤) = đźđ đ1đ (đ¤, đđ (đ¤)) + đ˝đ đđ (đ¤) + đžđ đđ (đ¤) , đđ (đ¤) = đźđó¸ đ2đ (đ¤, đđ (đ¤)) + đ˝đó¸ đđ (đ¤) + đžđó¸ đđó¸ (đ¤) , đĽđ+1 = đ ((1 â đźđ â đžđ ) đĽđ đđ (đ¤) = đźđó¸ ó¸ đ3đ (đ¤, đđ (đ¤)) + đ˝đó¸ ó¸ đđ (đ¤) + đžđó¸ ó¸ đđó¸ ó¸ (đ¤) , +đźđ đđ [(1 â đ˝đ ) đŚđ + đ˝đ đđŚđ ] + đžđ đ˘đ ) , đĽ1 â đś, đ ⼠1, (11) where {đźđ }, {đ˝đ }, {đžđ }, {đźđó¸ }, {đ˝đó¸ }, {đžđó¸ } are appropriate sequences in [0, 1) and {đ˘đ }, {Vđ } are bounded sequences in đś. He proved weak and strong convergences theorems for nonexpansive nonself mappings in uniformly convex Banach spaces. In 2011, Kiziltunc [33] studied the strong convergence to a common fixed point of a new iterative scheme for two nonself asymptotically quasi-nonexpansive-type mappings in Banach spaces defined as follows: where đ1 , đ2 , đ3 : Ί × đś â đś are three asymptotically nonexpansive random self-mappings, đ1 : Ί â đś is an arbitrary given measurable mapping from Ί to đś, {đđ (đ¤)}, {đđó¸ (đ¤)}, {đđó¸ ó¸ (đ¤)} are bounded sequence of measurable functions from Ί to đś, and {đźđ }, {đźđó¸ }, {đźđó¸ ó¸ }, {đ˝đ }, {đ˝đó¸ }, {đ˝đó¸ ó¸ }, {đžđ }, {đžđó¸ }, {đžđó¸ ó¸ } are sequences of real numbers in [0, 1] with đźđ + đ˝đ + đžđ = đźđó¸ + đ˝đó¸ + đžđó¸ = đźđó¸ ó¸ + đ˝đó¸ ó¸ + đžđó¸ ó¸ = 1. Remark 4. If đ1 = đ2 = đ3 = đ and đžđ = đžđó¸ = đžđó¸ ó¸ = 0, then (14) becomes as follows: đđ+1 (đ¤) = đźđ đđ (đ¤, đđ (đ¤)) + đ˝đ đđ (đ¤) , đđ (đ¤) = đźđó¸ đđ (đ¤, đđ (đ¤)) + đ˝đó¸ đđ (đ¤) , đđ (đ¤) = đźđó¸ ó¸ đ3đ (đ¤, đđ (đ¤)) + đ˝đó¸ ó¸ đđ (đ¤) , đĽđ+1 = đ ((1 â đđ ) đĽđ + đđ đ(đđ)đâ1 đ ⼠1, đ¤ â Ί, (15) × ((1 â đźđ ) đŚđ + đźđ đ(đđ)đâ1 đŚđ )) , đŚđ = đ ((1 â đđ ) đĽđ + đđ đ(đđ)đâ1 (14) đ ⼠1, đ¤ â Ί, đŚđ = đ ((1 â đźđó¸ â đžđó¸ ) đĽđ + đźđó¸ đđ × [(1 â đ˝đó¸ ) đĽđ + đ˝đó¸ đđĽđ ] + đžđó¸ Vđ ) , (13) (12) × ((1 â đ˝đ ) đĽđ + đ˝đ đ(đđ)đâ1 đĽđ )) , đĽ1 â đś, đ ⼠1, where {đđ }, {đđ }, {đźđ }, {đ˝đ } are appropriate sequences in [0, 1). More recently, Deng et al. [34] obtained the strong and weak convergences theorems for common fixed points of two nonself asymptotically nonexpansive mappings in Banach spaces. which was studied by Beg and Abbas in [30]. For nonself random mappings, Zhou and Wang [37] studied the approximation of the following iteration process: đđ+1 (đ¤) = đ ( (1 â đźđ ) đđ (đ¤) +đźđ đ(đđ)đâ1 (đ¤, đđ (đ¤))) , đđ (đ¤) = đ ((1 â đ˝đ ) đđ (đ¤) + đ˝đ đ(đđ)đâ1 (đ¤, đđ (đ¤))) , đ ⼠1, đ¤ â Ί, (16) 4 International Journal of Analysis where đ : Ί × đś â đ¸ is an asymptotically nonexpansive nonself random mapping, đ1 : Ί â đś is an arbitrary given measurable mapping from Ί to đś, {đźđ }, {đ˝đ } are sequences in [0, 1], and đ is a nonexpansive retraction from đ¸ to đś. Saluja [38] and many other authors extended the results of Zhou and Wang [37] by studying multistep random iteration scheme with errors for common random fixed point of a finite family of nonself asymptotically nonexpansive random mapping in real uniformly separable Banach spaces. Inspired and motivated by [32â34, 37] and others, we introduced a new three-step and đ-step random iterative scheme with errors for asymptotically quasi-nonexpansivetype nonself random mappings in a separable Banach space. Some strong convergences theorems are established for these new random iterative schemes with errors in separable Banach space. The iterative scheme for three nonself random mappings is defined as follows. a measurable mapping. Define sequences function {đđ(đ) (đ¤)}, {đđ(đâ1) (đ¤)}, . . . , {đđ(1) (đ¤)} in đś as follows: đđ+1 (đ¤) = đđ(đ) (đ¤) đâ1 = đ [(1 â đđ(đ) â đđ(đ) ) đđ (đ¤) + đđ(đ) đđ(đđđ) × (đ¤, (1 â đźđ(đ) ) đđ(đâ1) (đ¤) + đźđ(đ) đđ đâ1 ×(đđđ) đđ(đâ1) (đ¤) = đ [(1 â đđ(đâ1) â đđ(đâ1) ) đđ (đ¤) đâ1 + đđ(đâ1) đđâ1 (đđđâ1 ) × (đ¤, (1 â đźđ(đâ1) ) đđ(đâ2) (đ¤) đâ1 +đźđ(đâ1) đđâ1 (đđđâ1 ) Definition 5. Let đ1 , đ2 , đ3 : Ί × đś â đś be three nonself random mappings, where đś is a nonempty closed convex subset of a separable Banach space đ¸, and đ : đ¸ â đś is a nonexpansive retraction of đ¸ onto đś. Let đ1 (đ¤) : Ί â đś be a measurable mapping. Suppose that {đđ (đ¤)} is generated iteratively by đ1 (đ¤) â đś, having â â â = â â â â â â = â â â đâ1 đđ(1) (đ¤) = đ [(1 â đđ(1) â đđ(1) ) đđ (đ¤) + đđ(1) đ1 (đđ1 ) đâ1 đâ1 × (đ¤, (1 â đźđ(1) ) đđ (đ¤) + đźđ(1) đ1 (đđ1 ) × (đ¤, (1 â đźđ ) đđ (đ¤) đâ1 × (đ¤, đđ (đ¤)) ) + đđ(1) đđ(1) ] , (đ¤, đđ (đ¤))) +đđ đđ (đ¤)] , đđ (đ¤) = đ [(1 â đđ â đżđ ) đđ (đ¤) + đđ đ2 (đđ2 ) đâ1 đ ⼠1, đ¤ â Ί, (18) đâ1 × (đ¤, (1 â đ˝đ ) đđ (đ¤) +đ˝đ đ2 (đđ2 ) (đ¤, đđ(đâ2) (đ¤))) +đđ(đâ1) đđ(đâ1) ] , đđ+1 (đ¤) = đ [(1 â đđ â đđ ) đđ (đ¤) + đđ đ1 (đđ1 ) +đźđ đ1 (đđ1 ) (đ¤, đđ(đâ1) (đ¤)))+đđ(đ) đđ(đ) ] , (đ¤, đđ (đ¤))) + đżđ đđ (đ¤)] , where {đđ(đ) }, {đźđ(đ) }, and {đđ(đ) } (đ = 1, 2, . . . , đ) are sequences in [0, 1] such that đđ(đ) + đđ(đ) ⤠1, for all (đ = 1, 2, . . . , đ), and {đđ(đ) } (đ = 1, 2, . . . , đ) are bounded sequences of measurable functions from Ί to đś for all đ¤ â Ί. đâ1 đđ (đ¤) = đ [ (1 â đđ â đ đ ) đđ (đ¤) + đđ đ3 (đđ3 ) The following lemma is useful for proving our results. × (đ¤, (1 â đžđ ) đđ (đ¤) Lemma 7 (see [39]). Let {đđ }, {đđ } and {đđ } be nonnegative real sequences satisfying đâ1 +đžđ đ3 (đđ3 ) (đ¤, đđ (đ¤))) + đ đ âđ (đ¤) ] , (17) đđ+1 ⤠(1 + đđ ) đđ + đđ , If for all đ ⼠1, đ¤ â Ί , where {đđ }, {đđ }, {đđ }, {đźđ }, {đ˝đ }, {đžđ }, {đđ }, {đżđ }, and {đ đ } are sequences in [0, 1] such that đđ + đđ ⤠1, đđ + đżđ ⤠1, đđ + đ đ ⤠1, and {đđ (đ¤)}, {đđ (đ¤)}, {âđ (đ¤)} are bounded sequences of measurable functions from Ί to đś for all đ¤ â Ί. Definition 5 can be extended to đ nonself random mappings as follows. Definition 6. Let đ1 , đ2 , . . . , đđ : Ί × đś â đś be đ nonself random mappings, where đś is a nonempty closed convex subset of a separable Banach space đ¸, and đ : đ¸ â đś is a nonexpansive retraction of đ¸ onto đś. Let đ1 (đ¤) : Ί â đś be ââ đ=1 đđ < â and ââ đ=1 đđ đ ⼠1. (19) < â, then (1) limđ â â đđ exists; (2) limđ â â đđ = 0 whenever lim inf đ â â đđ = 0. 2. Main Results In this section, we will first prove the strong convergence of the iterative scheme (17) to a common random fixed point for three asymptotically quasi-nonexpansive-type nonself random mappings in a separable Banach space. Then, we extend the obtained results to đ asymptotically quasi-nonexpansivetype nonself random mappings by using the iterative scheme (18). Finally, we use Theorem 8 and Condition (A) [40] to obtain a convergences theorem for scheme (17). International Journal of Analysis 5 Theorem 8. Let đ¸ be a real separable Banach space and đś a nonempty closed convex subset of đ¸ with đ being a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, 3, be three asymptotically quasi-nonexpansive-type nonself random mappings with đš = â3đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)}, {đđ (đ¤)} and {đđ (đ¤)} are the sequences defined as in (17) where {đđ }, {đđ }, {đđ }, {đźđ }, {đ˝đ }, {đžđ }, {đđ }, {đżđ }, and {đ đ } are sequences in [0, 1] such that đđ + đđ ⤠1, đđ + đżđ ⤠1, đđ + đ đ ⤠1 and {đđ (đ¤)}, {đđ (đ¤)}, {âđ (đ¤)} are bounded sequences of measurable functions from Ί to đś with â the following restrictions: ââ đ=1 đđ < â, âđ=1 đżđ < â, and â âđ=1 đ đ < â. Then, {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , and đ3 if and only if lim inf đ (đđ (đ¤) , đš) = 0, đââ đ¤ â Ί. (20) Proof . The necessity of (20) is obvious. Next, we prove the sufficiency of (20). Let đ(đ¤) â đš = â3đ=1 đ đš(đđ ); by the boundedness of the sequences of measurable functions {đđ (đ¤)}, {đđ (đ¤)}, {âđ (đ¤)}, we put for each đ¤ â Ί, óľŠ óľŠ đ (đ¤) = max { sup óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ ⨠đâĽ1,đâđš (21) óľŠ óľŠ × sup óľŠóľŠóľŠâđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ }. Then, đ(đ¤) < â for each đ¤ â Ί. Since đ(đ¤) â đš and đ(đ¤) : Ί â đś is any measurable mapping, we have âđ ⼠đ0 , âđ â đš. (26) Setting for đ¤ â Ί, đâ1 đđ (đ¤) = (1 â đźđ ) đđ (đ¤) + đźđ đ1 (đđ1 ) đâ1 Vđ (đ¤) = (1 â đ˝đ ) đđ (đ¤) + đ˝đ đ2 (đđ2 ) (đ¤, đđ (đ¤)) , (đ¤, đđ (đ¤)) , đâ1 đđ (đ¤) = (1 â đžđ ) đđ (đ¤) + đžđ đ3 (đđ3 ) (đ¤, đđ (đ¤)) . (27) Thus, for đ(đ¤) â đš and đ¤ â Ί, using (17) and (24), we have óľŠóľŠóľŠđđ+1 (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ óľŠóľŠ đâ1 óľŠ = óľŠóľŠđ [(1 â đđ â đđ ) đđ (đ¤) + đđ đ1 (đđ1 ) óľŠ đâ1 ⤠óľŠóľŠóľŠóľŠ(1 â đđ â đđ ) đđ (đ¤) + đđ đ1 (đđ1 ) đâ1 (đ¤, đđ (đ¤))) óľŠ +đđ đđ (đ¤) â đ (đ¤) óľŠóľŠóľŠóľŠ óľŠ = óľŠóľŠóľŠ(1 â đđ â đđ ) đđ (đ¤) + đđ đ (đ¤) + đđ đ (đ¤) â đ (đ¤) đâ1 + đđ (đ1 (đđ1 ) óľŠ óľŠ đâ1 lim sup { sup {óľŠóľŠóľŠóľŠđđ (đđđ ) (đ¤, đ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ đââ đ(đ¤)âđš (đ¤, đđ (đ¤)) â đ (đ¤)) óľŠ +đđ (đđ (đ¤) â đ (đ¤))óľŠóľŠóľŠ đ = 1, 2, 3. (22) It follows that for any given đ > 0, there exists a positive integer đ0 such that for đ ⼠đ0 and đ(đ¤) â đš, we have óľŠ óľŠ đâ1 sup {óľŠóľŠóľŠóľŠđđ (đđđ ) (đ¤, đ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ đ(đ¤)âđš óľŠ óľŠ â óľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ } ⤠đ, óľŠ óľŠ óľŠ đâ1 óľŠ {óľŠóľŠóľŠóľŠđ3 (đđ3 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ â óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ} ⤠đ, (đ¤, (1 â đźđ ) đđ (đ¤) + đźđ đ1 (đđ1 ) đâĽ1,đâđš óľŠ óľŠ â óľŠóľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ} } ⤠0, âđ ⼠đ0 , âđ â đš, (25) óľŠ × (đ¤, đđ (đ¤)) + đđ đđ (đ¤) ] â đ (đ¤) óľŠóľŠóľŠóľŠ đâĽ1,đâđš óľŠ óľŠ × sup óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ â¨ óľŠ óľŠ óľŠ đâ1 óľŠ {óľŠóľŠóľŠóľŠđ2 (đđ2 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ â óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ} ⤠đ, (23) đ = 1, 2, 3. Since {đđ (đ¤)}, {đđ (đ¤)}, and {đđ (đ¤)} â đ¸, then we have for đ¤ â Ί, óľŠ óľŠ óľŠ đâ1 óľŠ {óľŠóľŠóľŠóľŠđ1 (đđ1 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ â óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ} ⤠đ, âđ ⼠đ0 , âđ â đš, (24) óľŠ óľŠ â¤ (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đđ óľŠóľŠóľŠóľŠđ1 (đđ1 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ + đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đđ [óľŠóľŠóľŠóľŠđ1 (đđ1 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ â óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ ] óľŠ óľŠ + đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ (đ¤) óľŠ óľŠ â¤ (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ (đ¤) . (28) 6 International Journal of Analysis In addition, by (24), we obtain Also, by (17) and (26), we have óľŠ óľŠóľŠ óľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 = óľŠóľŠóľŠóľŠ(1 â đźđ ) đđ (đ¤) + đźđ đ1 (đđ1 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đźđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đźđ óľŠóľŠóľŠóľŠđ1 (đđ1 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ (1 â đźđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đźđ đ + đźđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ = óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đźđ đ. (29) Again using (17) and (25), we have óľŠ óľŠóľŠ óľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ đâ1 = óľŠóľŠóľŠóľŠđ [(1 â đđ â đżđ ) đđ (đ¤) + đđ đ2 (đđ2 ) (đ¤, Vđ (đ¤)) óľŠ +đżđ đđ (đ¤) ] â đ (đ¤) óľŠóľŠóľŠóľŠ óľŠ đâ1 ⤠óľŠóľŠóľŠóľŠ(1 â đđ â đżđ ) đđ (đ¤) + đđ đ2 (đđ2 ) × (đ¤, (1 â đ˝đ ) đđ (đ¤) + đ˝đ đ2 (đđ2 ) đâ1 (đ¤, đđ (đ¤))) óľŠ +đżđ đđ (đ¤) â đ (đ¤) óľŠóľŠóľŠóľŠ óľŠ = óľŠóľŠóľŠ(1 â đđ â đżđ ) đđ (đ¤) + đđ đ (đ¤) + đżđ đ (đ¤) â đ (đ¤) đâ1 + đđ (đ2 (đđ2 ) đâ1 × (đ¤, (1 â đžđ ) đđ (đ¤) + đžđ đ3 (đđ3 ) (đ¤, đđ (đ¤))) óľŠ +đ đ âđ (đ¤) â đ (đ¤) óľŠóľŠóľŠóľŠ óľŠ = óľŠóľŠóľŠ(1 â đđ â đ đ ) đđ (đ¤) + đđ đ (đ¤) + đ đ đ (đ¤) â đ (đ¤) đâ1 + đđ (đ3 (đđ3 ) (đ¤, đđ (đ¤)) â đ (đ¤)) óľŠ +đ đ (âđ (đ¤) â đ (đ¤))óľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đđ â đ đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đđ óľŠóľŠóľŠóľŠđ3 (đđ3 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ + đ đ óľŠóľŠóľŠâđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đđ â đ đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ đ đ (đ¤) . (32) In addition, by (26), we have (đ¤, Vđ (đ¤)) â đ (đ¤)) óľŠ +đżđ (đđ (đ¤) â đ (đ¤))óľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đđ â đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đđ óľŠóľŠóľŠóľŠđ2 (đđ2 ) (đ¤, Vđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ + đżđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đđ â đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ óľŠóľŠóľŠVđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đżđ đ (đ¤) . óľŠ óľŠóľŠ óľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ đâ1 = óľŠóľŠóľŠóľŠđ [(1 â đđ â đ đ ) đđ (đ¤) + đđ đ3 (đđ3 ) óľŠ × (đ¤, đđ (đ¤)) + đ đ âđ (đ¤) ] â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ đâ1 ⤠óľŠóľŠóľŠóľŠ(1 â đđ â đ đ ) đđ (đ¤) + đđ đ3 (đđ3 ) (30) In addition, by (25), we have óľŠ óľŠóľŠ óľŠóľŠVđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 = óľŠóľŠóľŠóľŠ(1 â đ˝đ ) đđ (đ¤) + đ˝đ đ2 (đđ2 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đ˝đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đ˝đ óľŠóľŠóľŠóľŠđ2 (đđ2 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ (1 â đ˝đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ˝đ đ + đ˝đ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ = óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ˝đ đ. (31) óľŠóľŠ óľŠ óľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 = óľŠóľŠóľŠóľŠ(1 â đžđ ) đđ (đ¤) + đžđ đ3 (đđ3 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đžđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ đâ1 + đžđ óľŠóľŠóľŠóľŠđ3 (đđ3 ) (đ¤, đđ (đ¤)) â đ (đ¤)óľŠóľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ (1 â đžđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đžđ đ + đžđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ = óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đžđ đ. (33) Substituting (29), (30), (31), (32), and (33) into (28) and simplifying, we obtain óľŠóľŠ óľŠ óľŠóľŠđđ+1 (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ â¤ (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ (đ¤) óľŠ óľŠ â¤ (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ [óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đźđ đ] + đđ đ (đ¤) óľŠ óľŠ = (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đźđ đ + đđ đ (đ¤) International Journal of Analysis óľŠ óľŠ â¤ (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ [(1 â đđ â đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ +đđ óľŠóľŠóľŠVđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đżđ đ (đ¤)] + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ = (1 â đđ â đđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ 7 óľŠ óľŠ = (1 â đđ â đđ đżđ â đđ đđ đ đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ + đđ đđ đ + đđ đđ đđ đ + đđ đđ đđ đžđ đ + đđ đđ đ đ đ (đ¤) + đđ đđ đ˝đ đ + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ = (1 â đđ â đđ đżđ â đđ đđ đ đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ + đđ (1 â đđ â đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đđ đ + [đđ + đđ đđ + đđ đđ đđ + đđ đđ đđ đžđ + đđ đđ đ˝đ + đđ đźđ ] đ óľŠ óľŠ + đđ đđ óľŠóľŠóľŠVđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + [đđ đđ đ đ + đđ đżđ + đđ ] đ (đ¤) + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ = (1 â đđ â đđ đđ â đđ đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ + đđ đ + đđ đđ đ + đđ đđ óľŠóľŠóľŠVđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ â¤ (1 â đđ â đđ đđ â đđ đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ + đđ đ + đđ đđ đ + đđ đđ [óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ˝đ đ] + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ = (1 â đđ â đđ đđ â đđ đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ + đđ đ + đđ đđ đ + đđ đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đđ đ˝đ đ + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ â¤ (1 â đđ â đđ đđ â đđ đżđ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ óľŠ óľŠ + đđ đđ đ + đđ đđ (1 â đđ â đ đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ + đđ đđ đđ đ + đđ đđ đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đđ đ đ đ (đ¤) + đđ đđ đ˝đ đ + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) = (1 â đđ â đđ đżđ â đđ đđ đđ â đđ đđ đ đ ) óľŠ óľŠ × óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ + đđ đđ đ óľŠ óľŠ + đđ đđ đđ đ + đđ đđ đđ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đđ đ đ đ (đ¤) + đđ đđ đ˝đ đ + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ â¤ (1 â đđ â đđ đżđ â đđ đđ đđ â đđ đđ đ đ ) óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đ + đđ đđ đ + đđ đđ đđ đ + đđ đđ đđ óľŠ óľŠ × óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đđ đđ đđ đžđ đ + đđ đđ đ đ đ (đ¤) + đđ đđ đ˝đ đ + đđ đżđ đ (đ¤) + đđ đźđ đ + đđ đ (đ¤) óľŠ óľŠ â¤ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + 6đ + (đ đ + đżđ + đđ ) đ (đ¤) . (34) ââ đ=1 Let đ đ (đ¤) = 6đ + (đ đ + đżđ + đđ )đ(đ¤); then, for all đ¤ â Ί. It follows by (34) that óľŠ óľŠ inf óľŠóľŠóľŠđđ+1 (đ¤) â đ (đ¤)óľŠóľŠóľŠ đ(đ¤)âđš óľŠ óľŠ â¤ inf óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ đ (đ¤) , đ(đ¤)âđš đ đ (đ¤) < â âđ ⼠đ0 , đ¤ â Ί. (35) From (35) and ââ đ=1 đ đ (đ¤) < â for all đ¤ â Ί, we have đ (đđ+1 (đ¤) , đš) ⤠đ (đđ (đ¤) , đš) + đ đ (đ¤) , âđ¤ â Ί. (36) By Lemma 7 and (36), it follows that limđ â â đ(đđ (đ¤), đš) exists for all đ(đ¤) â đš = â3đ=1 đ đš(đđ ) and đ¤ â Ί. Since lim inf đ â â đ(đđ (đ¤), đš) = 0, then we have lim đ (đđ (đ¤) , đš) = 0, đ¤ â Ί. (37) đââ Next, we prove that đđ (đ¤) is a Cauchy sequence in đ¸ for each đ¤ â Ί. For đ ⼠đ0 , đ ⼠đ1 , and đ(đ¤) â đš, we have by (35) that óľŠ óľŠóľŠ óľŠóľŠđđ+đ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđđ+đâ1 (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ đ+đâ1 (đ¤) óľŠ óľŠ â¤ óľŠóľŠóľŠđđ+đâ2 (đ¤) â đ (đ¤)óľŠóľŠóľŠ + đ đ+đâ1 (đ¤) + đ đ+đâ2 (đ¤) .. . đ+đâ1 óľŠ óľŠ â¤ óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + â đ đ (đ¤) . đ=đ (38) Therefore, by using (38), we have for each đ¤ â Ί, óľŠóľŠ óľŠ óľŠóľŠđđ+đ (đ¤) â đđ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđđ+đ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ â óľŠ óľŠ â¤ 2 óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ + â đ đ (đ¤) . đ=đ (39) 8 International Journal of Analysis Since đ(đ¤) â đš and by (39), we have for each đ¤ â Ί, óľŠ óľŠóľŠ óľŠóľŠđđ+đ (đ¤) â đđ (đ¤)óľŠóľŠóľŠ â ⤠2đ (đđ (đ¤) , đš) + â đ đ (đ¤) , âđ ⼠đ0 . đ=đ (40) ââ đ=1 Since limđ â â đ(đđ (đ¤), đš) = 0 and đ đ (đ¤) < â, for given đ > 0, there exists a positive integer đ1 ⼠đ0 such that đ(đđ (đ¤), đš) < đ/4 and ââ đ=1 đ đ (đ¤) < đ/2. We have óľŠ óľŠóľŠ óľŠóľŠđđ+đ (đ¤) â đđ (đ¤)óľŠóľŠóľŠ < đ, âđ¤ â Ί, (41) or óľŠóľŠ lim óľŠđ đ â â óľŠ đ+đ óľŠ (đ¤) â đđ (đ¤)óľŠóľŠóľŠ = 0, âđ¤ â Ί; (42) this shows that đđ (đ¤) is a Cauchy sequence in đś for each đ¤ â Ί. Since đ¸ is complete and đś is a closed subset of đ¸ and so it is complete, then there exists a đ(đ¤) â đś such that đđ (đ¤) â đ(đ¤) as đ â â, for all đ¤ â Ί. Now, we show that đ(đ¤) â đš. By contradiction, we assume that đ(đ¤) does not belong to đš. Since đš is closed set, đ(đ(đ¤), đš) > 0. By using the fact that limđ â â đ(đđ (đ¤), đš) = 0, it follows that for all đ(đ¤) â đš, óľŠ óľŠóľŠ óľŠóľŠđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđ (đ¤) â đđ (đ¤)óľŠóľŠóľŠ + óľŠóľŠóľŠđđ (đ¤) â đ (đ¤)óľŠóľŠóľŠ . (43) ⤠0 (đđ đ â â) , (44) which is a contradiction. Hence, đ(đ¤) â đš. Corollary 9. Suppose that the conditions in Theorem 8 are satisfied. Then the random iterative sequence đđ (đ¤) generated by (17) converges to a common random fixed point đ(đ¤) if and only if for all đ¤ â Ί, there exists a subsequence đđđ (đ¤) of đđ (đ¤) which converges to đ(đ¤). Theorem 10. Let đ¸ be a real separable Banach space and đś a nonempty closed convex subset of đ¸ with đ as a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, 3, be three asymptotically quasi-nonexpansive nonself random mappings with đš = â3đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)}, {đđ (đ¤)}, and {đđ (đ¤)} are the sequences defined as in (17) where {đđ }, {đđ }, {đđ }, {đźđ }, {đ˝đ }, {đžđ }, {đđ }, {đżđ }, and {đ đ } are sequences in [0, 1] such that đđ + đđ ⤠1, đđ + đżđ ⤠1, đđ + đ đ ⤠1, and {đđ (đ¤)}, {đđ (đ¤)}, {âđ (đ¤)} are bounded sequences of measurable functions from Ί to đś with â the following restrictions: ââ đ=1 đđ < â, âđ=1 đżđ < â and â âđ=1 đ đ < â. Then, {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , and đ3 if and only if lim inf đ (đđ (đ¤) , đš) = 0, đââ đ¤ â Ί. Theorem 11. Let đ¸ be a real separable Banach space and đś be a nonempty closed convex subset of đ¸ with đ as a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, 3, be three asymptotically nonexpansive nonself random mappings with đš = â3đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)}, {đđ (đ¤)} and {đđ (đ¤)} are the sequences defined as in (17) where {đđ }, {đđ }, {đđ }, {đźđ }, {đ˝đ }, {đžđ }, {đđ }, {đżđ }, and {đ đ } are sequences in [0, 1] such that đđ + đđ ⤠1, đđ + đżđ ⤠1, đđ + đ đ ⤠1, and {đđ (đ¤)}, {đđ (đ¤)}, {âđ (đ¤)} are bounded sequences of measurable functions from Ί to đś with â the following restrictions: ââ đ=1 đđ < â, âđ=1 đżđ < â, and â âđ=1 đ đ < â. Then, {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , and đ3 if and only if lim inf đ (đđ (đ¤) , đš) = 0, đââ đ¤ â Ί. (46) Proof. Since đđ : Ί × đś â đ¸, đ = 1, 2, 3, are three asymptotically nonexpansive nonself random mappings, by Remark 2, they are asymptotically nonexpansive-type nonself random mappings, and therefore they are asymptotically quasi-nonexpansive-type nonself random mappings; the conclusion of Theorem 11 can be obtained from Theorem 8 immediately. Now, we can extend and generalize Theorems 8, 10, and 11 by using random iterative scheme (18) as follows. This implies that óľŠ óľŠ đ (đ (đ¤) , đš) ⤠óľŠóľŠóľŠđ (đ¤) â đđ (đ¤)óľŠóľŠóľŠ + đ (đđ (đ¤) , đš) Proof. Since đđ : Ί × đś â đ¸, đ = 1, 2, 3, are three asymptotically quasi-nonexpansive nonself random mappings, by Remark 2, they are asymptotically quasi-nonexpansive-type nonself random mappings the conclusion of Theorem 10 can be proved from Theorem 8 immediately. (45) Theorem 12. Let đ¸ be a real separable Banach space and đś a nonempty closed convex subset of đ¸ with đ as a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, . . . , đ, be đ asymptotically quasi-nonexpansive-type nonself random mappings with đš = âđ đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)} is the sequence defined as in (18) where {đđ(đ) }, {đźn(đ) }, and {đđ(đ) } (đ = 1, 2, . . . , đ) are sequences in [0, 1] such that đđ(đ) + đđ(đ) ⤠1 for all đ = 1, 2, . . . , đ and {đđ(đ) (đ¤)} (đ = 1, 2, . . . , đ) are bounded sequences of measurable functions (đ) from Ί to đś with the following restrictions: ââ đ=1 đđ < â, for all (đ = 1, 2, . . . , đ). Then {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , . . . , đđ if and only if lim inf đ (đđ (đ¤) , đš) = 0, đââ đ¤ â Ί. (47) Theorem 13. Let đ¸ be a real separable Banach space and đś be a nonempty closed convex subset of đ¸ with đ as a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, . . . , đ be đ asymptotically quasi-nonexpansive nonself random mappings with đš = âđ đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)} be the sequence defined as in (18) where {đđ(đ) }, {đźđ(đ) }, and {đđ(đ) }, (đ = 1, 2, . . . , đ) are sequences in [0, 1] such that đđ(đ) + đđ(đ) ⤠1 for all đ = 1, 2, . . . , đ and {đđ(đ) (đ¤)}, (đ = 1, 2, . . . , đ) are bounded sequences of measurable functions (đ) from Ί to đś with the following restrictions: ââ đ=1 đđ < â International Journal of Analysis 9 for all (đ = 1, 2, . . . , đ). Then {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , . . . , đđ if and only if lim inf đ (đđ (đ¤) , đš) = 0, đââ đ¤ â Ί. đââ đ¤ â Ί. (49) Senter and Dotson [40] defined Condition (A) as follows. Definition 15 (see [40]). A mapping đ : đś â đś where đś is a subset of a Banach space đ¸ with đš(đ) ≠ đ is said to satisfy Condition (A) if there exists a nondecreasing function đ : [0, â) â [0, â) with đ(0) = 0, đ(đ) > 0, for all đ â (0, â) such that for all đĽ â đś, âđĽ â đđĽâ ⼠đ (đ (đĽ, đš (đ))) , (50) where đ(đĽ, đš(đ)) = inf{â đĽ â đ â: đ â đš(đ)}. As an application, we can apply Theorem 8 and Condition (A) to obtain a convergences theorem for scheme (17). Theorem 16. Let đ¸ be a real uniformly separable Banach space and đś a nonempty closed convex subset of đ¸ with đ as a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, 3, be three asymptotically quasi-nonexpansive-type nonself random mappings with đš = â3đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)}, {đđ (đ¤)} and {đđ (đ¤)} are the sequences defined as in (17) where {đđ },{đđ }, {đđ }, {đźđ }, {đ˝đ }, {đžđ }, {đđ }, {đżđ }, and {đ đ } are sequences in [0, 1] such that đđ + đđ ⤠1, đđ + đżđ ⤠1, đn + đ đ ⤠1 and {đđ (đ¤)}, {đđ (đ¤)}, {âđ (đ¤)} are bounded sequences of measurable functions from Ί to đś with â the following restrictions: ââ đ=1 đđ < â, âđ=1 đżđ < â, â and âđ=1 đ đ < â. Suppose one of the mappings đđ , đ = 1, 2, 3, satisfying Condition (A) and the following condition: limđ â â â đđ (đ¤) â đ(đ¤, đđ (đ¤)) â = 0, for all đ¤ â Ί. Then, {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , and đ3 . Proof. From Theorem 8, we have limđ â â â đđ (đ¤) â đ(đ¤) â, and limđ â â đ(đđ (đ¤), đš) exists. Let one of the mappings đđ , say đ1 satisfy Condition (A) and limđ â â â đđ (đ¤) â đ1 (đ¤, đđ (đ¤)) â= 0; then, we have for all đ¤ â Ί, óľŠ óľŠ lim đ (đ (đđ (đ¤) , đš)) ⤠lim óľŠóľŠóľŠđđ (đ¤) â đ1 (đ¤, đđ (đ¤))óľŠóľŠóľŠ = 0. đââ (51) đââ lim đ (đđ (đ¤) , đš) = 0. (48) Theorem 14. Let đ¸ be a real separable Banach space and đś be a nonempty closed convex subset of đ¸ with đ as a nonexpansive retraction. Let đđ : Ί × đś â đ¸, đ = 1, 2, . . . , đ be đ asymptotically nonexpansive nonself random mappings with đš = âđ đ=1 đ đš(đđ ) ≠ đ, for all đ¤ â Ί. Suppose that {đđ (đ¤)} is the sequence defined as in (18) where {đđ(đ) }, {đźđ(đ) }, and {đđ(đ) } (đ = 1, 2, . . . , đ) are sequences in [0, 1] such that đđ(đ) + đđ(đ) ⤠1 for all đ = 1, 2, . . . , đ and {đđ(đ) (đ¤)} (đ = 1, 2, . . . , đ) are bounded sequences of measurable functions from Ί to đś with (đ) the following restrictions ââ đ=1 đđ < â for all (đ = 1, 2, . . . , đ). Then, {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , . . . , đđ if and only if lim inf đ (đđ (đ¤) , đš) = 0, By the property of đ and since limđ â â đ(đđ (đ¤), đš) exists, we have that đââ (52) By Theorem 8, {đđ (đ¤)} converge to a common random fixed point of đ1 , đ2 , and đ3 . Acknowledgment The authors would like to extend their sincerest thanks to the anonymous referees and editors for the exceptional review of this work. The suggestions and recommendations in the report increased the quality of their paper. References [1] O. HansĚ, âReduzierende zufaĚllige Transformationen,â Czechoslovak Mathematical Journal, vol. 7, pp. 154â158, 1957. [2] O. HansĚ, âRandom operator equations,â in Proceeding of the 4th Barkeley Symposium on Mathematical Statistics and Probability, vol. 2, pp. 185â202, University of California Press, Berkeley, Calif, USA, 1961. [3] A. SĚpacĚek, âZufaĚllige Gleichungen,â Czechoslovak Mathematical Journal, vol. 5, pp. 462â466, 1955. [4] A. T. Bharucha-Reid, âFixed point theorems in probabilistic analysis,â Bulletin of the American Mathematical Society, vol. 82, no. 5, pp. 641â657, 1976. [5] I. Beg, âApproximation of random fixed points in normed spaces,â Nonlinear Analysis: Theory, Methods & Applications, vol. 51, no. 8, pp. 1363â1372, 2002. [6] I. Beg, âMinimal displacement of random variables under Lipschitz random maps,â Topological Methods in Nonlinear Analysis, vol. 19, no. 2, pp. 391â397, 2002. [7] I. Beg and N. Shahzad, âRandom fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces,â Journal of Applied Mathematics and Stochastic Analysis, vol. 7, no. 4, pp. 569â580, 1994. [8] S. Itoh, âRandom fixed-point theorems with an application to random differential equations in Banach spaces,â Journal of Mathematical Analysis and Applications, vol. 67, no. 2, pp. 261â 273, 1979. [9] N. S. Papageorgiou, âRandom fixed point theorems for measurable multifunctions in Banach spaces,â Proceedings of the American Mathematical Society, vol. 97, no. 3, pp. 507â514, 1986. [10] H. K. Xu, âSome random fixed point theorems for condensing and nonexpansive operators,â Proceedings of the American Mathematical Society, vol. 110, no. 2, pp. 395â400, 1990. [11] K. Goebel and W. A. Kirk, âA fixed point theorem for asymptotically nonexpansive mappings,â Proceedings of the American Mathematical Society, vol. 35, pp. 171â174, 1972. [12] J. Gornicki, âWeak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces,â Commentationes Mathematicae Universitatis Carolinae, vol. 30, no. 2, pp. 249â252, 1989. [13] M. O. Osilike and S. C. Aniagbosor, âWeak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings,â Mathematical and Computer Modelling, vol. 32, no. 10, pp. 1181â1191, 2000. 10 [14] J. Schu, âIterative construction of fixed points of asymptotically nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 158, no. 2, pp. 407â413, 1991. [15] J. Schu, âWeak and strong convergence to fixed points of asymptotically nonexpansive mappings,â Bulletin of the Australian Mathematical Society, vol. 43, no. 1, pp. 153â159, 1991. [16] W. V. Petryshyn and T. E. Williamson, Jr., âStrong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 43, pp. 459â497, 1973. [17] M. K. Ghosh and L. Debnath, âConvergence of Ishikawa iterates of quasi-nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 207, no. 1, pp. 96â103, 1997. [18] Q. H. Liu, âIterative sequences for asymptotically quasinonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 259, no. 1, pp. 1â7, 2001. [19] Q. H. Liu, âIterative sequences for asymptotically quasinonexpansive mappings with error member,â Journal of Mathematical Analysis and Applications, vol. 259, no. 1, pp. 18â24, 2001. [20] M. A. Noor, âNew approximation schemes for general variational inequalities,â Journal of Mathematical Analysis and Applications, vol. 251, no. 1, pp. 217â229, 2000. [21] B. Xu and M. A. Noor, âFixed-point iterations for asymptotically nonexpansive mappings in Banach spaces,â Journal of Mathematical Analysis and Applications, vol. 267, no. 2, pp. 444â453, 2002. [22] S. Suantai, âWeak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 506â517, 2005. [23] J. S. Jung and S. S. Kim, âStrong convergence theorems for nonexpansive nonself-mappings in Banach spaces,â Nonlinear Analysis: Theory, Methods & Applications, vol. 33, no. 3, pp. 321â 329, 1998. [24] S. Y. Matsushita and D. Kuroiwa, âStrong convergence of averaging iterations of nonexpansive nonself-mappings,â Journal of Mathematical Analysis and Applications, vol. 294, no. 1, pp. 206â 214, 2004. [25] N. Shahzad, âApproximating fixed points of non-self nonexpansive mappings in Banach spaces,â Nonlinear Analysis: Theory, Methods & Applications, vol. 61, no. 6, pp. 1031â1039, 2005. [26] W. Takahashi and G. E. Kim, âStrong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces,â Nonlinear Analysis: Theory, Methods & Applications, vol. 32, no. 3, pp. 447â454, 1998. [27] H. K. Xu and X. M. Yin, âStrong convergence theorems for nonexpansive non-self-mappings,â Nonlinear Analysis: Theory, Methods & Applications, vol. 24, no. 2, pp. 223â228, 1995. [28] C. E. Chidume, E. U. Ofoedu, and H. Zegeye, âStrong and weak convergence theorems for asymptotically nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 280, no. 2, pp. 364â374, 2003. [29] L. Wang, âStrong and weak convergence theorems for common fixed point of nonself asymptotically nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 323, no. 1, pp. 550â557, 2006. [30] I. Beg and M. Abbas, âIterative procedures for solutions of random operator equations in Banach spaces,â Journal of Mathematical Analysis and Applications, vol. 315, no. 1, pp. 181â201, 2006. International Journal of Analysis [31] Y. X. Tian, S. S. Chang, and J. L. Huang, âOn the approximation problem of common fixed points for a finite family of non-self asymptotically quasi-nonexpansive-type mappings in Banach spaces,â Computers & Mathematics with Applications, vol. 53, no. 12, pp. 1847â1853, 2007. [32] S. Thianwan, âWeak and strong convergence theorems for new iterations with errors for nonexpansive nonself-mapping,â Thai Journal of Mathematics, vol. 6, no. 3, pp. 27â38, 2008. [33] H. Kiziltunc, âOn common fixed points of a new iteration for two nonself asymptotically quasi-nonexpansive-type mappings in Banach spaces,â Journal of Nonlinear Analysis and Optimization, vol. 2, no. 2, pp. 259â267, 2011. [34] W. Q. Deng, L. Wang, and Y. J. Chen, âStrong and weak convergence theorems for common fixed points of two nonself asymptotically nonexpansive mappings in Banach spaces,â International Mathematical Forum, vol. 7, no. 9â12, pp. 407â417, 2012. [35] S. Plubtieng, P. Kumam, and R. Wangkeeree, âRandom threestep iteration scheme and common random fixed point of three operators,â Journal of Applied Mathematics and Stochastic Analysis, vol. 2007, Article ID 82517, 10 pages, 2007. [36] S. Plubtieng, R. Wangkeeree, and R. Punpaeng, âOn the convergence of modified Noor iterations with errors for asymptotically nonexpansive mappings,â Journal of Mathematical Analysis and Applications, vol. 322, no. 2, pp. 1018â1029, 2006. [37] X. W. Zhou and L. Wang, âApproximation of random fixed points of non-self asymptotically nonexpansive random mappings,â International Mathematical Forum, vol. 2, no. 37â40, pp. 1859â1868, 2007. [38] G. S. Saluja, âApproximation of common random fixed point for a finite family of non-self asymptotically nonexpansive random mappings,â Demonstratio Mathematica, vol. 42, no. 3, pp. 581â 598, 2009. [39] K. K. Tan and H. K. Xu, âApproximating fixed points of nonexpansive mappings by the Ishikawa iteration process,â Journal of Mathematical Analysis and Applications, vol. 178, no. 2, pp. 301â 308, 1993. [40] H. F. Senter and W. G. Dotson Jr., âApproximating fixed points of nonexpansive mappings,â Proceedings of the American Mathematical Society, vol. 44, pp. 375â380, 1974. Advances in Operations Research Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Applied Mathematics Algebra Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Probability and Statistics Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Differential Equations Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com International Journal of Advances in Combinatorics Hindawi Publishing Corporation http://www.hindawi.com Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences Mathematical Problems in Engineering Journal of Mathematics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Discrete Mathematics Journal of Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Discrete Dynamics in Nature and Society Journal of Function Spaces Hindawi Publishing Corporation http://www.hindawi.com Abstract and Applied Analysis Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Journal of Stochastic Analysis Optimization Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014
© Copyright 2025 Paperzz