Hamiltonian Systems
•
•
•
•
•
•
•
•
•
•
Introduction
Hamilton’s Equations & the Hamiltonian
Phase Space
Constants of the Motion & Integrable Hamiltonians
Non-Integrable Systems, the KAM Theorem & PeriodDoubling
The Henon-Heiles Hamiltonian
The Chirikov Standard Map
The Arnold Cat Map
The Dissipative Standard Map
Applications
Introduction
• No dissipation = Conservative
– Phase space volume = constant
– No transients, no attractors
– Isolated (closed) system: Conservative
• Open system: Dissipative
• Hamiltonian system: Dynamics governed by H(q,p)
– Solar system:
• Gravitation: conservative
• Tidal forces, solar wind: dissipative
• Dissipation negligible for short times
– Microscopic (quantum) systems
• Integrable systems: non-chaotic
Hamilton’s Equations & the Hamiltonian
• Hamilton formulation: phase space = { qi, pi }
• Dynamics ( Hamilton’s equations ):
H q, p, t
qi
pi
pi
H
qi
i 1, 2,
,Nf
Nf = degrees of freedom
E.g., n 3-D particles:
q = {qi} = { x1,y1,z1, x2,y2,z2, …, xn,yn,zn }
Nf = 3n
p = {pi} = { px1,py1,pz1, px2,py2,pz2, …, pxn,pyn,pzn }
Equivalent 1st order system of ODEs ( “DoF" = 2Nf ):
x x j j 1,
,2 N f
H
x2i 1 f 2i 1 x
x2 i
x2i 1 qi
x2i pi
H
x2 i f 2 i x
x2i 1
i 1,
,Nf
Symplectic structure: manifold with a (symplectic) 2-form as metric
For the Hamiltonian systems: dH
d f X f
i
d
q
dpi
i
X g , X f f , g
j
f g
g f
q j p j q j p j
(Poisson bracket)
Definition in terms of symplectic matrices ( see Goldstein ):
( M is symplectic if MT J M = J )
0
H
xJ
x
T
f g
f
,
g
J
x
x
x M x
I
J
I
0
f
f
df
f
f H
f H f
qj
pj
dt
q
p
t
j
p j q j t
j
j
j q j p j
f
f , H
t
d H H
H is conserved ( a constant of the motion )
→
if it’s not explicitly time dependent.
dt
t
Phase Space
For a conservative system, trajectories in phase space are
confined to a constant energy surface.
DoF = N → energy surface is (2N-1)-D
Volume in state space of autonomous system
1 dV
f
i
V dt
i xi
xi fi x
See §3.13
For a conservative system H(q,p) :
1 dV
V dt
j
q j
H
pj pj
→ no attractors
H
q j
0
→ transients persist
Liouville’s Theorem
Probability of finding a system in dV =
q, p,t dV
ρ= probability density of systems in phase space.
H H
d
qj
pj
dt
p j t
p j q j t
j qj
j qj pj
, H
t
d
= material / hydrodynamic derivative → Lagrangian picture
dt
= change of ρ at fixed phase point → Eulerian picture
t
Liouville’s theorem:
d
0
dt
~ no-crossing theorem
for Hamiltonian systems
Integral Invariants
I t
t
dx1
I t
d I t
dt
dxn x, t
dx J x, t
0
1
0
0
J det J
0
n
dx
0
1
dx
d I t
0
dt
is an integral invariant if
d Jik J
dJ
xi i k
0 J
d t i, k d t J i k
i , k xk
and Jik is the cofactor of Jik :
x10
, xn
xn0
x
J J i k 0i
xk
d
dx
J
dt
0
n
I(t) is an integral invariant →
x1 ,
d J d J
d
J
0
dt
dt
dt
d Jik
where
dt
J i k J i m J
m
km
d xi xi
0 0
d t xk xk
J
J ik
Jik
dJ
x
xi xm i k
xi
xi
ik
0i J i k
J
J
J
i m J x J
mk
0
d t i , k xk
i , k , m xm xk
i , k , m xm
i , m xm
d J d J
d
d
J
J
x J
x x
dt
dt
dt
dt
t
d I t
dt
0
dx10
dxn0 J
x
t
I(t) is an integral invariant →
t
dx1
J
x
t
dxn
x
t
x 0
t
Liouville’s theorem:
x 0
if ρ is the probability density of a Hamiltonian H(q,p,t).
(ρ acts like an incompressible fluid )
Proof:
J t det
q
q0
q
p0
p
q0
p
p0
I
J t
det
q0
t
q0
p0
t
q0
q0
t
p0
p0
I
t
p0
J t
J t
det
q
I 0 t
q0
p0
t
q0
q0
t
p0
I
p0
t
p0
1
1
1
det
qi 0 pi 0
i 1 q t 1 p t
i0
i0
q
p
1 i 0 i 0 t
pi 0
i qi 0
H
H
1
t
pi 0 qi 0
i qi 0 pi 0
→
dJ
0 x J
dt
→
x 0
1 O t 2
&
d
x 0
dt
t
Alternatively:
q p
H
H
x i i
0
pi
pi qi
i qi
i qi pi
QED
In general:
1st order ODEs:
x 0
t
xF
Hamiltonian systems
→
F 0
t
F 0
t
Equation is linear in ρ →
• Evolution of ρ can’t be chaotic, even when individual
trajectories are.
• No “divergence” of evolution of nearby ρ’s.
• No sensitivity to I.C.
• Prototype of chaotic Hamiltonian system: Arnold cat map.
Constants of Motion & Integrable Hamiltonians
Any quantity that is independent of t is a constant of the motion.
For a conservative system,
i.e.,
E H q, p is independent of t.
H q t , p t H q 0 , p0
t
Each point on a possible trajectory {q(t),p(t)} has the same energy E.
Many different trajectories may have the same energy.
E is a constant of the motion.
It is also an isolating integral that restricts the motion on
surface.
Let pj be a constant of the motion, then
0 pj
i.e., H is not explicitly dependent on qj.
Each trajectory is confined to an (2Nf-2)-D surface.
Each trajectory can be characterized by { E, pj0 }.
some
H
q j
( qj is cyclic )
k independent isolating integrals
→ each trajectory is confined to an (2Nf-k)-D
surface
If k = Nf, the system is integrable. ( Trajectory Nf-D )
Isolating integrals are also called action variables Ji(q,p).
The variable conjugate to Ji(q,p) is called an angle variable.
Ji
H
0
i
i
H
Ji
Θi can always be chosen as dimensionless so that
Ji has the dimension of action.
{ Θi, Ji } can be related to { q, p } by a canonical transformation.
If H can be written as H(J), the system is integrable.
Ji Ji , H J 0
i
can be satisfied iff
→ System is in involution.
J , J 0
i
j
i,j
( + independence )
Integrability can be examined by expressing the desired
canonical transformations in terms of a Birkhoff series.
Examples of integrable systems:
• All 1-D systems with analytic H → H = ωJ.
•
All systems with linear equations of motion → normal modes.
•
All systems that are completely separable.
•
Solitons
Let H = H(J), then
Inverse transformation:
i
H
i J
Ji
→
qi t qi θ t , J t
i t i t i 0
pi t pi θ t , J t
For a bounded system, q and p must be periodic functions of Θ.
Canonical perturbation theory:
Series diverges → non-integrable
q,p as series of Θ, J.
Simple Harmonic Oscillator
p2 1 2
H
kq
2m 2
Nf = 1
→
q
Phase space: 2-D
dp p
k q
dq q
p/m
Fixed point:
→
H
p
p
m
2J
q t
cos (t )
m
p t 2m J sin (t )
H
k q
q
m q k q
→
Trajectory: 1-D (H = const → ellipse)
p d p m k qd q
q*, p * 0,0
Switching to (Θ,J):
p
p2 1
H
m 2 q 2 J
2m 2
p
2m
k
m
= elliptic point
P
Ellipses:
periodic
1 2 1
p mk q 2 C
2
2
Q
J
m
q
2
H
P2 Q2
PQ
1
pq
2
Trajectory is a circle of radius √J & area πJ in (P,Q) space
Q t J cos (t )
P t J sin (t )
H
J
t 0 t
Area of ellipse:
pd q J d
2 J
E
1
2mL g L 1 cos
2mg L
2
p2
H
mg L1 cos
2
2mL
p
2
p mg L sin
mL
p
f
mgL sin 0
2
mL p
p 2mL2 E mg L1 cos
p
p
sin 2
2
2mL g L
1
0.5
→ Conservative
4
3
2
2
-0.5
-1
3
4
0
J
mgL cos
g
2 cos
L
1
mL2
0
1
v c
2
mL
Trajectories in {θ, p } space for ε = 0.2, 0.6, 1.0, 1.4, 1.8
Elliptic points at
Hyperbolic points at
pθ = 0, θ = 2nπ
pθ = 0, θ = (2n+1)π
Separatrices: Stable & unstable manifolds of a hyperbolic point
Typical for integrable Hamiltonian systems
Elliptic Integrals & Elliptic Functions
Ref: M.Abramowitz, I.A.Stegun, “Handbook od Mathematical Functions”.
Complete Elliptic integrals:
(Incomplete) Elliptic integrals:
1st kind:
F \ m
0
2nd kind:
K m F \ m
2
d
1 m sin 2
E \ m d
E m E \ m
2
1 m sin
2
0
(Jacobian) Elliptic functions:
sin sn u | m sn u
cos cn u
u F \ m
am u
1 m sin 2 dn u
Mathematica:
EllipticK[m] = EllipticF[π/2,m]
Sin[φ] = JacobiSN[EllipticF[φ,m],m]
Systems with N Degrees of Freedom
N
Integrable systems:
H θ, J i J i
i 1
Ji
H
0
i
~ N uncoupled oscillators
i
Q.M.:
equally
spaced
H
i
Ji
( simple harmonic if ω independent of J )
N constants of motion → trajectories on N-D torus in phase space
For N = 2: trajectories are on (invariant) torus
1
H
J1
2
ωi incommensurate → q.p. → ergodic
→ time average = ensemble average
Non-integrable systems:
tori broken; J(θ) not lines
H
J2
The Kepler Problem (Integrable)
See H.Goldstein, "Classical Mechanics", 2nd ed., §10-7 ( with
minor variations )
2
p
pr2
k
H
2 2 r 2 r
m1m2
m1 m2
r, p , , p , J , , J
r
1
1
2
2
Solution of the (separable) Hamilton-Jacobi eq gives
J 1 2 p
H J1, J 2
J 2 J1 k
2 2 k 2
J1 J 2
2
2
E
E
4 2 k 2
H
1
2
3
J 1 J1 J 2
→
1 2
k Gm1m2
Nonintegrable Systems
Integrable systems: periodic / q.p.
→ non-chaotic
Transition to chaos: integrable → slightly non-integrable
Non-integrable systems: Df 2
For Df = 2, integrable → motion on 2-D torus
Non-integrable → motion on 3-D constant E surface
Poincare sections transverse to 3-D constant E surface is 2-D
Integrable system ( sets of nested tori with separatrices ):
• Series of discrete points → periodic
• Closed paths around point → quasi-periodic orbits around
elliptic point
• Hyperbolic orbits near hyperbolic points
Chaos ?
Henon-Heiles, almost integrable
KAM Theorem
Let
H J, θ H0 J H1 J, θ
H0 integrable
KAM theorem (criteria dropped): Tori that survive perturbation satisfy
W
g
m
n
n5
g(ε) increases monotonically with ε
Implication:
• For ε > 0, all tori with rational W break up
• (KAM) tori with irrational W persist, then break up 1 by 1 as ε
• Last to be destroyed has golden mean ratio ( most irrational )
Qualitative explanation:
• W rational → motion sustained by strong resonances between
overlapping harmonics
•
→ any perturbation will remove overlappings
•
→ rapid break up of tori
increases
Sequential break-up of KAM tori
Band of width g
around m/n
n5
Tori within band dissolve
Resonance
structure
Chaos ~ overlap of resonances
Df = N → (2N-1)-D const E surface, N-D tori
A torus can partition E surface only if N = 2N-1 or (2N-1)-1
→ N = 1 or 2
( KAM tori partition phase space )
For N > 2, tori break up → stochastic web ( no partitioning )
Poincare-Birkhoff Theorem
H
H ~ twisted map (area preserving)
0
Break up of n/M tori
→ n/M pairs of 2n/2M
elliptic & hyperbolic fixed
points
→ Period-doubling
Insets & outsets of hyperbolic point dissolve first
→ homoclinic & heteroclinc tangles → chaos?
Different I.C. may lead to q.p./chaotic motion
For Df 2, surviving KAM tori confine chaotic motion
near broken tori
For Df 3, chaos from any broken torus can roam mostly
freely (Arnold diffusion).
Lyapunov exponent:
•
Σλi = 0 for conservative system
•
Chaos: at least 1 λi > 0
Monodromy matrix M :
z t M z 0
Eigenvalues μi of M ~ Floquet multipliers:
μi comes in pairs of (μ, μ-1 )
z = periodic orbit
Πμi = 1
i e
i
Period-Doubling
Break up of m/n tori
• m/n pairs of 2m/2n elliptic & hyperbolic fixed points
• Period doubling
• ε increases → further period doubling …
• δH = 8.721097…, αH = -4.01807…
Period-n-tuplings are common in Hamiltonian systems
Cause: resonances among constituent nonlinear oscillators
Meyer's theorem: 5 types of bifurcations
Singularities in H can also cause non-integrability
E.g., billiard balls
Henon-Heiles Problem
A star in axially symmetric galaxy;
• Nf = 3
• Known integrals of motion: E, Lz
• No known analytic form of 3rd integral
• If 3rd integral not exist → σ(vρ) σ(vz)
• Observed: σ(vρ) : σ(vz) = 2 : 1
Henon-Heiles model:
1 2 1 3
r r sin 3
2
3
1
1
V x, y x 2 y 2 x 2 y y 3
2
3
V r,
Henon-Heiles Hamiltonian
1 2
1 2
1 3
2
2
2
H px p y x y x y y
2
2
3
V
V
2
0.4
0.3
1.5
0.2
1
0.1
-2
-1
1
2
y
0.5
-0.1
-0.2
2
x
-2
0
1
-1
1
-1
0
-1
-2
2
1
-2
2
-2
7.5
-1
5
2.5
0
0
y
1
-2
-1
0
1
2
2
V
0.4
0.3
Height of potential well around 0 is 1/6
→ bound orbits for E < 1/6
1 2
1 2
1 3
2
2
2
H
p
p
x
y
x
y
y
Hamilton's eqs:
x
y
2
2
3
-2
H
x
px
px
H
px
x 2x y
x
H
y
py
py
py
0.2
0.1
-1
1
-0.1
-0.2
H
y x2 y2
y
Nf = 2 → 3-D const E surface
→ 2-D Poincare section
→
E
1 2
1 2 1 3
2
p
p
y y
x
y
2
2
3
Choice: y-py plane at x = 0
2
y
py
y
0.3
0.3
0.2
0.2
0.1
0.1
-0.3
-0.2
-0.1
0.1
0.2
0.3
x
-0.3
-0.2
-0.1
0.1
0.2
0.3
-0.1
-0.1
-0.2
-0.2
-0.3
-0.3
E = 0.06, x0 = 0, y0 = -0.1475, px0 = 0.3101, py0 = 0.
Distorted torus: Quasi-periodic
N = 1000
y
y
py
0.4
0.3
0.3
0.2
0.2
0.1
0.1
-0.3
-0.2
-0.1
0.1
0.2
0.3
x
-0.3
-0.2
-0.1
0.1
-0.1
-0.1
-0.2
-0.2
-0.3
-0.3
E = 0.06, x0 = 0, y0 = 0.1563, px0 = 0.18876, py0 = -0.25
Hyperbolic points:
•
separatrices
• Heteroclinic tangles → Stochastic layers (webs)
0.2
0.3
0.4
y
N = 2000
y
py
0.3
0.2
0.1
-0.3
-0.2
0.1
-0.1
0.2
0.3
0.4
-0.1
x
-0.2
-0.3
Outside separtrix → Qualitatively different
•
x-y orbits wraps y-axis
•
Bounds allowed region
E = 0.06, x0 = 0, y0 = 0, px0 = -0.0428, py0 = -0.3438
N = 200
y
0.4
0.3
0.2
0.2
0.1
-0.3
-0.2
-0.1
0.1
0.2
0.3
0.4 -0.4
-0.2
0.2
-0.1
-0.2
-0.2
-0.3
E = 0.06
-0.4
N = 10000
E = 0.1
•
Orbits near separatrices easily disturbed
•
Breakup of KAM torus → necklace ----
(Birkhoff thm)
( Associated hyperbolic points not shown )
•
Remaining KAM tori block chaotic roaming
N = 40000
0.4
0.6
0.4
0.4
0.2
-0.4
-0.2
0.2
0.2
0.4
0.6
-0.4
-0.2
0.2
0.4
0.6
-0.2
-0.2
-0.4
-0.4
-0.6
E = 0.14
N = 40000
E = 0.166
N = 40000
•
Single trajectory roams through most places
•
Lyapunov exponents: +,0,0,-
0.8
The Chirikov Standard Map
Aliases: Taylor-Greene-Chirikov map, the standard map.
K
sin 2 n mod 1
2
n1 n rn1 mod 1
K
n rn
sin 2 n mod 1
2
rn 1 rn
(Moser) Twist map:
n1 n
n1 n W n mod 1
W = winding number
J
1
0
W 1
1
area preserving
J
1
K cos 2
1 1 K cos 2
area preserving
1
Fixed points ( with r → J ):
K
→
Jn
sin 2 n J n m
2
K
n J n
sin 2 n n p →
2
m = 0 and θ* = 0, ½
K < 2π →
Near fixed point:
rn1 1 K cos 2 * rn
1 1 K cos 2 *
n
n1
Floquet multipliers:
1
2
2 m
m,p = integers
sin 2 *
K
K
J*
sin 2 * p m p 0, 1
2
1
K cos 2 *
1
1 K cos 2 *
0
1 K cos 2 * K cos 2 * 0
1
1
K cos 2 * K 2 cos 2 2 * 4 K cos 2 *
2
1
1 K cos 2 * K 2 cos2 2 * 4 K cos 2 *
2
1
1 K K 2 4K
2
For (J*,θ*) = (0,0):
Reμ
|μ|
Imμ
1
2
1
1.75
1
2
3
4
5
6
1.5
0.5
1.25
-1
1
3
-2
4
5
6
0.75
-0.5
0.5
-3
0.25
-1
1
2
3
4
5
→ (0,0) is a stable spiral for K < 4
1
1 K K 2 4K
For (J*,θ*) = (0, ½ ):
2
8
6
μ
→ (0, ½) is a saddle point for all K
4
2
1
2
3
4
5
6
6
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0.54
0.2
0.4
0.6
0.8
0.2
1
0.4
0.6
0.8
1
0.52
K = 0
K = 0.2
0.5
c.f. Henon-Heiles
0.48
θ = 0, J = ½
Period 2
0.46
0.2
0.4
0.6
0.8
1
The Arnold Cat Map
xn 1 2 xn yn mod 1
J
yn 1 xn yn mod 1
2 1 1 0
2 1
1 1
3 1 0
2
1
→ Area-preserving
1
3 5
2
→ All fixed points are saddle points
Fixed points:
x * y* m
x* k
xn 1 2 1 xn
y 1 1 y mod 1
n
n1
2 1 1 2
1 1 0 1
2 1 0 1
1 1 1 1
→
y* 0
x* 0
2.618
0.382
→
↓
←
Ex 8.8-1: Fixed points of f(n) have rational coordinates
Evolution of 1-D conservative system:
d
0
dt
→
qn , pn , n q0 , p0 ,0
pn 1 2 pn qn mod 1
qn 1 pn qn mod 1
( n ~ tn )
qn , pn , n Ajnk exp 2 i jqn k pn
Fourier analysis:
jk
qn 1 , pn 1 , n 1 Aj k
n 1
Aj k A jk
exp 2 i jqn 1 k pn 1
n *
n
jk
Ajnk1 exp 2 i j qn pn k 2 pn qn
jk
Ajnk1 exp 2 i j k qn j 2k pn
jk
j j k
k j 2k
j 2 j k
k k j
qn 1 , pn 1 , n 1 A2 nj1k, k j exp 2 i jqn k pn
qn , pn , n
j k
→
n 1
n
A2 j k , k j Aj , k
n 1
n
Aj , k Aj k , j 2 k
Spread to new modes,
But not IC sensitive
The Dissipative Standard Map
G.Schmidt, B.H.Wang, PR A 32, 2994 (85)
rn 1 J D rn
K
sin 2 n mod 1
2
n1 n rn1 mod 1
K
n J D rn
sin 2 n mod 1
2
JD
K cos 2
1
1 K cos 2
JD = 0 :
JD
Dissipative for JD < 1
K
n 1 n
sin 2 n mod 1
2
( Sine circle map with Ω = 0)
1
JD = 0 ~ Circle map
0.8
0.6
0.4
0.2
1
2
3
4
5
JD = 0 , K > 1 → period-doubling route to chaos beyond K∞
Channels overlap for JD > 0
Bifurcated 2n orbits ~
period-doubling 2n : p1, p2
periodic orbits ~
periodic windows: p2', p3'
2n chaotic bands disappear at
univeral values of JD
Applications
• Billiards (elastic collisions, piecewise linear)
–
–
–
–
Rectangular or circular walls → periodic / q.p.
stadium / Sinai billiards ( round obstacle ) → chaotic for some orbits
2 balls + gravity: All kinds of behavior
Quantum chaos
• Astronomical Dynamics
– Orbits of Pluto & some asteroids may be chaotic
– Kuiper objects
• Particle Accelerators
– Avoid possible chaotic trajectories in accelerator design
• Superconductivity
– Vortex structures under magnetic field (type II superconductors) phaselocking, Arnold tongues, Farey tree, devil's staircase
• Optics
– small dielectric spheres: whispering gallery lasers
– Spheres distorted → chaos
© Copyright 2026 Paperzz