Chapter 07.02 Trapezoidal Rule for Integration-More Examples Industrial Engineering Example 1 A company advertises that every roll of toilet paper has at least 250 sheets. The probability that there are 250 or more sheets in the toilet paper is given by P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 Approximating the above integral as 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 a) Use single segment Trapezoidal rule to find the probability that there are 250 or more sheets. b) Find the true error, E t , for part (a). c) Find the absolute relative true error for part (a). Solution a) f (a) f (b) I (b a) , where 2 a 250 b 270 f y 0.3515e 0.3881 y 252.2 2 f 250 0.3515e 0.3881250252.2 0.053721 2 f 270 0.3515e 0.3881270252.2 1.3888 1054 0.053721 1.3888 10 54 I 270 250 2 0.53721 2 b) The exact value of the above integral cannot be found. For calculating the true error and relative true error, we assume the value obtained by adaptive numerical integration using Maple as the exact value. 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 250 0.97377 07.02.1 2 07.02.2 Chapter 07.02 so the true error is Et True Value Approximat e Value 0.97377 0.53721 0.43656 c) The absolute relative true error, t , would then be t True Error 100 % True Value 0.97377 0.53721 100 % 0.97377 44.832 % Example 2 A company advertises that every roll of toilet paper has at least 250 sheets. The probability that there are 250 or more sheets in the toilet paper is given by P( y 250) 0.3515 e0.3881( y252.2) dy 2 250 Approximating the above integral as 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 a) Use single segment Trapezoidal rule to find the probability that there are 250 or more sheets. b) Find the true error, E t for part (a). c) Find the absolute relative true error for part (a). Solution ba n1 a) I f ( a ) 2 f (a ih ) f (b) 2n i 1 n2 a 250 b 270 ba h n 270 250 2 10 f ( y) 0.3515e 0.3881( y 252.2) 2 270 250 21 f 250 2 f a ih f 270 22 i 1 20 f 250 2 f 250 1 10 f 270 4 I Trapezoidal Rule-More Examples: Industrial Engineering 20 f 250 2 f 260 f 270 4 20 0.053721 2 1.9560 10 11 1.3888 10 54 4 0.26861 07.02.3 Since f 250 0.3515e 0.3881250252.2 0.05372 2 f 270 0.3515e 0.3881270252.2 1.3888 1054 2 f 260 0.3515e 0.3881260252.2 1.9560 10 11 b) The exact value of the above integral cannot be found. For calculating the true error and relative true error, we assume the value obtained by adaptive numerical integration using Maple as the exact value. 2 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 0.97377 so the true error is Et True Value Approximat e Value 0.97377 0.26861 0.70516 c) The absolute relative true error, t , would then be True Error 100 % True Value 0.97377 0.26861 100 % 0.97377 72.416 % Table 1 Values obtained using multiple-segment Trapezoidal rule for t 270 P( y 250) 0.3515 e 0.3881( y 252.2) dy 2 250 n Value Et 1 2 3 4 5 6 7 8 0.53721 0.26861 0.18009 0.21815 0.50728 0.80177 0.93439 0.95768 0.43656 0.70516 0.79368 0.75562 0.46648 0.17200 0.039381 0.016092 t % 44.832 72.416 81.506 77.598 47.905 17.663 4.0442 1.6525 a % --99.999 49.153 17.447 56.997 36.729 14.193 2.4317
© Copyright 2026 Paperzz