Trust modeling

Ing. Arnoštka Netrvalová
Trust Modeling
(Introduction)
September 2008
Trust modeling
Fide, sed qui fidas, vide.
It is an equal failing to trust everybody,
and to trust nobody.
Why? Where? What?
 Behaviour and trust
 Trust representation
 Trust visualization
 Trust forming
 Trust, agents and MAS
 Cooperation
 Results
 Can it be trusted?

[ChangingMinds.org]
September 2008
2 / 25
Trust modeling
WHY? WHERE?
Phenomenon of everyday life
 Internet

 e-banking
– credibility
 e-commerce
 e-service
 PC
September 2008
– trustworthiness of partners
– quality, promptness
and computing
3 /25
Trust modeling
WHERE? WHAT?
Computing and trust
P2P systems – security (working together of nodes)
 GRID computing – security (reliability of sources, users)
 AD HOC networks – message integrity (node =server, router,

client, malicious nodes, special protocols, cryptographic codes)

MAS – security dependability (malicious agent detection, migrating,
selection of „the best“ agent, system’s optimization)

Semantic web – credibility of sources (machine information
collection)
September 2008
4 /25
Trust modeling
Trust definition
Trust (or symmetrically, distrust) is a particular level
of the subjective probability with which an agent
will perform a particular action, both before we
can monitor such an action (or independently of
our capacity of ever to be able to monitor it) and
in a context in which it affects our own action.
Gambetta's definition was derived as a summary of the contributions to the symposium
on trust in Cambridge, England, 1988.
September 2008
5 /25
Trust modeling
Behaviour and trust
“I trust him.”
“How much do I trust him?”
“How much I think, he trusts me ?”

What does it mean?

Can trust be measured?
What is visual representation of trust?

September 2008
6 /25
Trust modeling
Basic trust levels

Blind
trust



Ignorance
Absolute
distrust
September 2008





7 /25
Trust modeling
Representation of trust value
1
0
0.95
Blind
trust
0.7
0.5
0.3
 0.025
High
trust
0.05
High
distrust
Low trust
Absolute
distrust
Low distrust
Ignorance
September 2008
8 /25
Trust modeling
Hysteretic trust loop
Trust value
Absolute
distrust
Ignorance
Th
ThTh+
Interval
Blind trust
1
September 2008
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0
9 /25
Trust modeling
Trust visualization
„Trust square“: two relation for couple and one value per relationship
trust
(1, 0)
(1, 1)
Subject A
(0.5, 0.5)
distrust
(0, 1)
(0, 0)
distrust
trust
Subject B
September 2008
10 /25
Trust modeling
Trust visualization
BASIC:
1 couple of reciprocal distrust
3 couple - one entity trusts the other one and the other entity distrusts
completely the first one
5 couple - one entity trusts and the other one is indifferent
7 couple - one entity is indifferent and the other distrusts the first one
9 - both entities are indifferent to each other or no relationship between
them
1
2
3
4
Example:
5
September 2008
6
7
8
9
Trust in community
11 /25
Trust modeling
Trust types
A


personal
– trust between entity
- unilateral
- reciprocal
phenomenal
– trust to phenomenon
(product)
0.9
0.8
0.6
B
C
0.5
Example:
Representation of personal trust
in group
September 2008
12 /25
Trust modeling
Personal trust forming

Tij  f tij , t ji , cij , rCij , rPij , zij , G , 

Tij  tij  tij
t ij - personal trust i-th entity to j-th entity
t ji - personal trust j-th entity to i-th entity
cij - number of reciprocal contacts i-th and j-th entities
rCij - number of recommendations of j-th entity to i-th from others
zij - knowledge (learning, testing set)
rPij - reputation of j-th entity at i-th entity
G  ,   - randomness, where 0<<1
tij - trust difference (trust acquisition, trust loss)
September 2008
13 /25
Trust modeling
Phenomenal trust forming

Ti k  f tik , rCki , rPki , G , 

Ti k  t ik  t ik
tik
- trust i-th entity in k-th product
k
- number of recommendation of k-th product to i-th entity
rCi
rPik - reputation of k-th product at i-th entity
G  ,   - randomness, where 0<<1
t ik
September 2008
- trust difference (trust acquisition, trust loss)
14 /25
Trust modeling
Trust model concept
Basic idea - intervention trust model
Application
support
World
 




Consumers

 


Producers


 




 

Dominator
----
control
….. data
 communication
September 2008
15 /25
Trust modeling
Trust, agents and MAS
Environment
Agent
Learning
Perception
Representation
Knowledge base
Decision
making
Planning
Action
Context
Agents
Agent
Knowledge
base
Reputations
September 2008
Trust
Evaluation
Communication
Recommendations
16 /25
Trust modeling
Software for agent modeling and
simulation



RETSINA (Reusable Environment for Task-Structured Intelligent
Networked Agents ) - Carnegie Mellon University
Swarm (Swarm Intelligence) - Santa FE Research Institute
JADE (Java Agent DEvelopment Framework)
JADE - development of MAS(FIPA standards), middleware



Runtime environment
Libraries for development of agent
Graphical tool package for administration and monitoring of agents
September 2008
17 /25
Trust modeling
Cooperation – selection of partners
Application




Graph theory
Game theory
Risk - “caution index”
Reciprocal trust
Trust matrix
 t11 t12

 t 21 t 22
t
t 32
31

T
 t 41 t 42
 ... ...

t
 n1 t n 2
September 2008
t13
t14
t 23
t 24
t 33
t 34
t 43
t 44
...
...
t n3
t n4
... t1n 

... t 2 n 
... t 3n 

... t 4 n 
... ... 
... t nn 
18 /25
Trust modeling
Cooperation – caution index
Payoff matrix
P
O
P
x, x
w, z
O
z, w
y, y
x = tij t ji
w = t ij (1- t ji)
z = (1- t ij ) t ji
y = (1- t ij ) (1- t ji )
r = (y -z)
g = (x -y)
t = (w -x)
Caution matrix
Caution index
rt
c
g
September 2008
 c11

 c21
c
C   31
 c41
 ...

c
 n1
c12
c13
c14
c22
c23
c24
c32
c33
c34
c42
c43
c44
...
...
...
cn 2
cn 3
cn 4
... c1n 

... c2 n 
... c3n 

... c4 n 
... ... 
... cnn 
19 /25
Trust modeling
Cooperation - criteria of couple selection
Reduced caution matrix
(pre-selected pairs)
 c p11 c p12 c p13 c p14 ... c p1n 

C p  
 c p 21 c p 22 c p 23 c p 24 ... c p 2n 
Criteria of couple selection
Minimum:
1. means both of caution index
2. maximum of caution index of evaluated couples
September 2008
20
Trust modeling
Results – personal trust (Trustor)
trust
1
Trustee's reputation
0,9
0,8
t12
t14
t25
reputation
1
0,7
t32
t34
t54
0,84
0,9
0,6
0,74
0,8
0,5
0,79
0,7
0,4
0,6
0,3
0,5
0,2
0,4
0,1
0,3
0
0,2
0
1
2
3
4
step
3
5
0,34
0,27
0,14
0,1
0
2
1
S[i,j]
1
0
4
0
1
2
3
4
5
3
2
1
s12 (r21)
s14 (r41)
s25 (r52)
s32 (r23)
s34 (r43)
s54 (r45)
0
0
September 2008
1
2
3
4
5
21 /25
Trust modeling
Results - cooperation
Example
(n=15, =10°, tij - random):
t
BA
1
[0;6]
[4;9]
[4;13]
[5;9]
[5;10]
[9;12]
[12;14]
c[0.45;0.15]
c[0.52;0.35]
c[0.19;0.51]
c[0.40;0.49]
c[0.36;0.50]
c[0.56;0.24]
c[0.40;0.36]
t[0.96;0.82]
t[0.79;0.72]
t[0.78;0.94]
t[0.71;0.74]
t[0.72;0,79]
t[0.88;0.72]
t[0.83;0.81]
0,78; 0,94
0,9
0,96; 0,82
0,83; 0,81
Group size n (α=15°)
Number of identical
couples/1000 runs
15
669
50
659
100
663
500
672
1 000
662
0,8
0,72; 0,79
0,71; 0,74
September 2008
0,79; 0,72
0,88; 0,72
0,7
0,7
0,8
0,9
1
t
AB
22 /25
Trust modeling
Can it be trusted?
Trust in Math
The classic proof that 2 = 1 runs thus.
1.
2.
3.
4.
5.
6.
First, let x = y = 1. Then: x = y
x2 = xy
x2 - y2 = xy - y2
(x + y)(x - y) = y(x - y)
x+y=y
2=1
Now, you could look at that, and shrug, and say …
September 2008
23 /25
Trust modeling
Důvěra, práce a výsledky
„Malá důvěra je příčinou třenic a sporů, často vyvolaných
neetickým či neprofesionálním jednáním. Jejím projevem
jsou skryté agendy a politikaření skupin. Bývá zdrojem
nezdravé rivality, vede k uvažování „výhra-prohra“ a ústí
do defenzivní komunikace. Důsledkem je snížení rychlosti
a zvýšení námahy při řešení úkolů.“ …
… „Tím nejdůležitějším faktorem ovlivňujícím důvěru
jsou výsledky. Avšak být důvěryhodným, neznamená jen
mít výsledky, ale také docílit, aby o nich věděli i ostatní.“
Stephen M. R. Covey: Důvěra: jediná věc, která dokáže změnit vše, Management Press, 2008
[Stephen M. R. Covey: The Speed of Trust, Free Press, New York, 2006]
September 2008
24 /25
Thank you for your attention.