Effective Stress No Flow Condition C B A hw A B L L/2 C 1 No Flow Condition σ '= σ − u At Point A σ A = γ wH w μA = γ wH w σ A ' = γ wH w − γ wH w = 0 No Flow Condition At Point C σ C = γ w H w + γ sat L μC = γ w ( H w + L) = γ w H w + γ w L σ C ' = γ w H w + γ sat L − γ w H w − γ w L σ C ' = γ sat L − γ w L = (γ sat − γ w ) L = γ ' L where γ ' = (γ sat − γ w ) = effective or bouyant unit weight σC '= γ ' L 2 Upward Flow Condition C B A h hw A B L L/2 C Upward Flow Condition At Point C σ C = γ w H w + γ sat L μ C = γ w ( H w + L + h) = γ w H w + γ w L + γ w h σ C ' = γ w H w + γ sat L − γ w H w − γ w L − γ w h σ C ' = γ sat L − γ w L − γ w h = (γ sat − γ w ) L − γ w h = γ ' L − γ w h σ C ' = γ ' L − γ wh Note: effective stress decreased below static level (γ’L) Upward flow decreases particle to particle contact 3 Upward Flow Condition σ C ' = γ ' L − γ wh Note σc’ =0 when γ ' L = γ wh γ' h = = icritical = critical hydraulic gradient (σ ' = 0) γw L At critical hydraulic gradient we have quick sand – (shear stress =0) Soil particles have no stress transmitted through the grain contacts Downward Flow Condition C B A h hw A B L L/2 C 4 Downward Flow Condition At Point C σ C = γ w H w + γ sat L μ C = γ w ( H w + L − h) = γ w H w + γ w L − γ w h σ C ' = γ w H w + γ sat L − γ w H w − γ w L + γ w h σ C ' = γ sat L − γ w L + γ w h = (γ sat − γ w ) L + γ w h = γ ' L + γ w h σ C ' = γ ' L + γ wh Note: effective stress increased above static level (γ’L) Downward flow increases particle to particle contact Summary To find effective stress always calculate the total stress and pore water pressure then subtract porewater pressure from the total stress For flow conditions determine porewater pressure by determining the total head at the point of interest. 5
© Copyright 2026 Paperzz