ANATOMY Of SPEECH PRODUCTION: A META

Analyse von 82 Hirnaktivierungsxperimenten
mit vier verschiedenen
Wortproduktionsaufgaben:

Bildbenennung

Wortgenerierung
(z.B. Nennen Sie möglichst viele Tiere!)

Wortlesen
(HUND)

Pseudowortlesen
(HUNG)
Talairach & Tournoux (1988)
Lateral and medial view of reference brain
Reported
leastonce
once
Reported at least
Estimate of probability of overlap under the assumption
of a random distribution of activated regions
number of regions:
110
mean number of activated regions:
r
chance probability for a region to be reported
as activated in a single experiment (p1):
r/110
chance probability for a region to be reported as
activated in n1 out of n experiments:
n!
n1
n2
p
 p1  (1  p1 )
n1!n2!
(with n1 + n2 = n)
Reliability criterion:
p < 0.1 cut-off point in binomial distribution
Example region 1
Number of experiments:
82
Mean number of reported regions:
12.4
Reliably activated:
12 or more experiments
Reliably not activated:
4 or less experiments
Example region 2
Number of experiments:
23
Mean number of reported regions:
10.4
Reliably activated:
5 or more experiments
Reliably not activated:
-
Zuverlässig aktivierte (rot) und nicht aktivierte (blau)
Hirngebiete (basierend auf allen 82 Studien)
TASK ANALYSIS
Many tasks were not just word production tasks; they
involved other operations as well.
For instance, when you name the picture of a horse,
you not only produce the word 'horse', but you also
look at the picture and recognize it.
Such additional 'lead-in' operations involve the activation
of additional brain regions. These should be filtered out.
That requires a systematic task analysis, a distinction between
'lead-in' and 'core' operations of word production.
Responses during Verb Generation Task
BANANA
TROUSERS
CHAIR
GLASSES
TRUMPET
PENCIL
BUTTON
BIRD
EAR
DOOR
peel, slip on, eat up, plant
put on, wash, mend, buy, warm
sit, build, nail, sell, work, learn
clean, put on, step on, buy, see
blow, make music, put away, hear, play
sharpen, break, put away, draw
tear off, close, open
fly, eat up, sing
hear, pinch
open, close, kick against
Aufgabe
Bildbenennung
Einleitungsprozesse
visuelle Objekterkennung
Kernprozesse
Konzeptuelle Vorbereitung
lexikalisches Konzept
lexikalische Selektion
Lemma
Wortlesen
visuelle
Worterkennung
Wortformzugriff
Wortform
Pseudowortlesen
Graphem/Phonem
Konversion
Syllabifizierung
phonologisches Wort
phonetische Enkodierung
aussprechen vs.
Wort “denken”
abstraktes Motorprogramm
Artikulation
gesprochenes Wort
Selbstmonitoring
Wortgenerierung
Worterkennung
Objektvorstellung
Gedächtnis etc.
Bildbenennung
Wortgenerierung
Bildbenennung (grün), Wortgenerierung (blau),
gemeinsame Gebiete (rot)
Gemeinsame Aktivierungsgebiete von
Bildbenennung und Wortgenerierung
Aufgabe
Bildbenennung
Einleitungsprozesse
visuelle Objekterkennung
Kernprozesse
Konzeptuelle Vorbereitung
lexikalisches Konzept
lexikalische Selektion
Lemma
Wortlesen
visuelle
Worterkennung
Wortformzugriff
Wortform
Pseudowortlesen
Graphem/Phonem
Konversion
Syllabifizierung
phonologisches Wort
phonetische Enkodierung
aussprechen vs.
Wort “denken”
abstraktes Motorprogramm
Artikulation
gesprochenes Wort
Selbstmonitoring
Wortgenerierung
Worterkennung
Objektvorstellung
Gedächtnis etc.
Aufgabe
Bildbenennung
Einleitungsprozesse
visuelle Objekterkennung
Kernprozesse
Konzeptuelle Vorbereitung
lexikalisches Konzept
lexikalische Selektion
Lemma
Wortlesen
visuelle
Worterkennung
Wortformzugriff
Wortform
Pseudowortlesen
Graphem/Phonem
Konversion
Syllabifizierung
phonologisches Wort
phonetische Enkodierung
aussprechen vs.
Wort “denken”
abstraktes Motorprogramm
Artikulation
gesprochenes Wort
Selbstmonitoring
Wortgenerierung
Worterkennung
Objektvorstellung
Gedächtnis etc.
Gemeinsame Aktivierungsgebiete von
Bildbenennung, Wortgenerierung und Wortlesen
Aufgabe
Bildbenennung
Einleitungsprozesse
visuelle Objekterkennung
Kernprozesse
Konzeptuelle Vorbereitung
lexikalisches Konzept
lexikalische Selektion
Lemma
Wortlesen
visuelle
Worterkennung
Wortformzugriff
Wortform
Pseudowortlesen
Graphem/Phonem
Konversion
Syllabifizierung
phonologisches Wort
phonetische Enkodierung
aussprechen vs.
Wort “denken”
abstraktes Motorprogramm
Artikulation
gesprochenes Wort
Selbstmonitoring
Wortgenerierung
Worterkennung
Objektvorstellung
Gedächtnis etc.
Gemeinsame Aktivierungsgebiete aller Aufgaben
Aussprechen im Vergleich zu Wort “denken”
Schematische Darstellung des Ergebnisses der
Meta-Analyse von 82 Hirnaktivierungsstudien
Indefrey, P. and Levelt, W.J.M. (2004) Cognition
The cognitive architecture of listening to
language
interpretation
integration with other
knowledge sources
syntactic analysis
word recognition
thematic analysis
phonological processing
phonemes, syllables
segmenting
speech code
decoding
speech signal
Tekst Sereno
Then once you have examined the city you can get
a uh nice contrast to the surrounding country side uh a very unique country side which contrasts the
distinction between the the mountains to the uh
low land of the coastal regions where there is a lot
more uh fishing.
Speech signal
0 1 2 3 4 5 6 7 8 9 10
snelheid proposities (rate of propositions)
snelheid lexical access (rate of words)
snelheid klanken (rate of phonemes)
secon
ds
mixing van alle vier
speech
signal
rate of
propositions
rate of
words
rate of
phonemes
Reversed speech versus silence
Word lists versus silence
Study
Studies comparing auditory stimuli to silent baseline
conditions
Stimulus
#
Study
Stimulus
Belin 1998
200ms frequency transition, 60/min
1
Mirz 1999
tones, 1000Hz
19
Belin 1998
40ms frequency transition, 60/min
2
Mirz 1999
tones, 1000 + 4000Hz
20
Belin 1999
synthetic diphthong, 6/min
3
Mirz 1999
words
21
Binder 2000
tones, different frequencies, 90/min
4
Müller 1997
sentences, 12/min
22
Bookheimer 1998
pseudowords, 9/min
5
Petersen 1988
words, 60/min
23
Celsis 1999
syllables, 180/min
6
Price 1996
words, 40/min
24
Celsis 1999
tones, 500 + 700Hz, 180/min
7
Price 1996
words, different rates
25
di Salle 2001
tones, 1000Hz, 6/min
8
Suzuki 2002a
words, 60/min
26
Engelien 1995
environmental sounds, 10/min
9
Suzuki 2002b
tones, 1000Hz, 60/min
27
Fiez 1996
pseudowords, 60/min
10
Thivard 2000
tones with spectral maxima, 60/min 28
Fiez 1996
words, 60/min
11
Warburton 1996
words, 4/min
29
Giraud 2000
vowels vs. expecting vowels, 120/min
12
Wise 1991
pseudowords, 40 or 60/min
30
Holcomb 1998
tones, 1500Hz + lower tones, 30/min
13
Wong 1999
reversed sentences, 30/min
31
Jäncke 1999
tones, 1000Hz, 60/min
14
Wong 1999
sentences, 30/min
32
Lockwood 1999
tones, 500 + 4000Hz, 60/min
15
Wong 1999
words, 30/min
33
Mellet 1996
words, 30/min
16
Wong 2002
reversed words, 15/min
34
Mirz 1999
music
17
Wong 2002
sentences, 12/min
35
Mirz 1999
sentences
18
Wong 2002
words, 15/min
36
Indefrey & Cutler, 2004
#
Studies comparing auditory stimuli to simpler auditory
stimuli
Study
Stimulus vs.
control stimulus
#
Benson 2001
CVC > CV > V
1
Binder 1996
words vs. tones
2
Binder 2000
pseudo vs. tones
3
Binder 2000
reversed words vs. tones
4
Binder 2000
words vs. tones
5
Giraud 2000
amplitude modulated noise vs. noise
6
Giraud 2000
sentences vs. vowels
7
Giraud 2000
words vs. vowels
8
Hall 2002
frequency modulated vs. static tone
9
Hall 2002
harmonic vs. single tone
10
Jäncke 2002
syllables vs. 350 ms white noise bursts
11
Jäncke 2002
syllables vs. steady state portion of vowel
12
Jäncke 2002
syllables vs. tones
13
Müller 2002
90% 1000Hz + 10% 500Hz vs. 1000Hz
14
Mummery 1999
words vs. signal correlated noise
15
Price 1996
words vs. reversed words
16
Schlosser 1998
sentences vs. unknown language
17
Scott 2000
sentences vs. rotated sentences
18
Thivard 2000
frequency transition vs. stationary tone
19
Indefrey & Cutler, 2004
Talairach & Tournoux (1988)
Lateral and medial view of reference brain
Silent
control
Silent
control
Silent
control
Silent
control
Silent
control
Silent
control
Silent
control
Silent
control
Silent
control
Silent
control
Summary
Listening to speech without an
additional task induces extensive
bilateral temporal activation but no
reliable activation of Broca’s area.
Summary
With increasing linguistic complexity of
stimuli, the distance of activation
maxima from the primary auditory
cortex increases; particularly in the left
hemisphere.
It seems to be the highest linguistic
processing level that leads to the most
significant activation difference
compared to a silent control.
Summary
The left hemisphere shows a clearer
stimulus-specific differentiation of
activation maxima.
Areas that seem to be especially related
to (post-) lexical and sentence level
processing can be identified.
Summary
bilateral posterior STG: phonology
left posterior STS: lexical phonology
left anterior STS: possibly lexical and
sentential prosody, possibly lexical and
sentential meaning
Hagoort & Indefrey,
in press
Neuroimaging studies on sentence processing
Hagoort & Indefrey,
in press
Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J
Stimuli
Condition
Stim ulus
Graphem ic /
Lexical
phonological
semantic
+
+
++
++
+
+++
+++
++
Task
xxx xxxx bright xx
Opposite meaning ?
xx xxx dark xxxxxx xx
YES or NO
The room is bright
Opposite meaning ?
The room is green
YES or NO
The dog chases the cat in the garden
Same meaning?
In the garden, the dog chases the cat
YES or NO
SIMPLE
MEDIUM
COMPLEX
Syntactic
Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J
Bookheimer (2002), Fi
Haller, Klarhöfer, Radue, Schwarzbach, & Indefrey (2007) Eur. J. Neuroscience
wegstossen-Animation(1)
wegstossen-Animation(2)
Condition1: Sentences
Der rote Kreis stößt die grüne Ellipse weg.
(The red circle pushes the green ellipse away.)
Condition 2: Noun phrases
roter Kreis, grüne Ellipse, wegstoßen
(red circle, green ellipse, push away)
Condition 3: Single words
Kreis, rot, Ellipse, grün, wegstoßen
(circle, red, ellipse, green, push away)
All conditions at slow (6/min) and fast (8/min) rate.
Sentences vs. Single Words
Activation maximum at -54,6,10
Activation maximum at -60,14,12
Indefrey et al. (2001) PNAS
Indefrey et al. (2004) Brain & Language
S and NP production vs. control (W)
Indefrey, Hellwig, Herzog, Seitz & Hagoort (2004) Brain & Language
Conclusions (1)



The left posterior IFG and the left posterior temporal
lobe subserve syntactic comprehension.
Neural activation in syntactic comprehension depends
on the need for syntactic analysis.
The two areas do not subserve the same function,
because the temporal area does not seem to respond to
syntactic errors and is not found in syntactic production.
Aufgabe vom 14.5.10

Finden Sie eine neue Studie (ab 2006) in der
mit FMRI, PET, oder NIRS entweder
Wortproduktion oder Wortverstehen oder
Satzverstehen untersucht wurde.
 Vergleichen Sie die Ergebnisse mit der
entsprechenden Meta-analyse.
 Wodurch könnten Unterschiede zustande
gekommen sein?
73