JOHN-NIRENBERG ESTIMATE JAN MALÝ 1. Lemma. Let v ∈ W 1,1 (B(0, 1)) be a function of zero median. Suppose that Z |∇v(y)| dy ≤ rn−1 B(x,r) for each x ∈ B(0, 1) and r > 0. Then Z eλ|v(x)| dx ≤ A, B(0,1) where A, λ depend only on n. Proof. We may assume that v ≥ 0, otherwise we split into positive and negative parts. Write B = B(0, 1), ( |∇v(x)|, x ∈ B, f (x) = 0, x∈ / B. We know that Z f (y) dy. |y − x|n−1 v(x) ≤ C B For k = 2, 3, . . . we use the Hölder inequality to obtain Z k−1 k1 Z f (y) f (y) k v(x) ≤ C 1 dy k−1 dy n−1− n−1+ k k B |y − x| B |y − x| We estimate Z f (y) 1 B |y − x|n−1− k dy = n − 1 − = n−1− ≤ n−1− ≤ n−1− 1 k 1 Z B ∞ Z k 1 t k −n Z 1 t 1 k −n Z 0 1 Z k f (y) dy dt B∩B(x,t) Z k 1 t k −n dt dy |y−x| 0 1 =k n−1− ∞ Z f (y) 1 Z f (y) dy dt + B(x,t) Z ∞ 1 t k −1 dt + 0 1 k ∞ 1 t k −n 1 1 t k −n dt 1 + 1 ≤ kn. Thus Z k k k−1 v (x) dx ≤ C k Z Z B B B Z Z f (y) n−1+ k−1 k |y − x| f (y) dy dx = C k k k−1 dx dy 1 n− k B B |y − x| Z = C k kk f (y) dy ≤ C k k k . B For k = 1 we use the Poincaré inequality to estimate Z Z v(x) dx ≤ C f ≤ C. B B 1 Z B f (y) dy dt Together Z eλv(x) dx = B ≤ ≤ Z X ∞ λk v k (x) B k=0 ∞ X kZ k=0 ∞ X λ k! dx v k (x) dx B (Cλe)k k=0 Since k! kk . ek k! kk ≤ 1, ek k! the sum converges if we choose λ so small that Cλe < 1. 2. Theorem. Let u ∈ W 1,1 (B(0, R)) be a function of zero median, u ≥ 0, and K ≥ 0. Suppose that Z |∇u(y)| dy ≤ Krn−1 B(x,r) for each x ∈ B(0, 1) and r > 0. Then Z eλu(x)/K dx ≤ ARn , B(0,R) where A, λ are as in Lemma 1. Proof. Set v(y) = 1 u(Ry), K Then ∇v(y) = y ∈ B(0, 1). R ∇u(Ry). K We have Z 1 |∇v(y)| dy = K B(z,ρ) Z 1 1−n |R∇u(Ry)| dy = R K B(z,ρ) Z |∇u(x)| dx ≤ ρn−1 . B(Rz,Rρ) Hence for λ, A as in Lemma 1, R −n Z e λu(x)/K Z dx = B(0,R) eλv(y) dy ≤ A. B(0,1) 2
© Copyright 2026 Paperzz