Logic with Elements of Set Theory Truth Tables October 2013 0. Assign truth values (T or F ) to the following statements: 4. The equation x2 + 1 = −5 has a real solution or five is an odd integer divisible by 3. 1. 3 6 4 and 4 is an odd integer. 2. 3 6 4 or 4 is an odd integer. 5. 21 · 10666 − 1 is divisible by 6 or 2x + 3 = 7. 3. 5 is odd or divisible by 4. A proposition can be • valid (a tautology), when it is always true, for all possible substitutions of variables, like (−p ∧ −q) ⇔ −(p ∨ q). • satisfiable (a contingency), when it holds true for at least one substitution, like p ⇒ q. • a contradiction, when it is never true, like p ∧ −p. 1. For aech of the following construct a truth table and determine whether the proposition is valid, satisfiable or a contradiction. 21. p ⇒ (q ⇒ (q ⇒ p)), 1. p ⇒ (p ∧ q), 11. (p ∧ q) ⇒ (p Y q), 2. −p ∨ (p ∨ q), 12. (p Y q) Y (p Y −q), 3. (p ∨ −q) ⇒ q, 13. (p ∨ q) Y (p ∨ −q), 4. (p ⇒ q) ⇒ q, 14. (p ⇒ q) Y (q ⇒ −p), 5. p ⇒ (q ⇒ q), 15. (p ⇒ q) Y (q ⇒ p), 24. ((p ∨ q) ∧ −q) ⇒ p, 6. (−p ⇒ q) ∨ p, 16. (p ⇒ −q) Y (q ⇒ p), 25. ((p ⇒ q) ∧ −q) ⇒ −p, 7. p ∧ (−p ∧ q), 17. (p ⇒ q) Y (−q ⇒ p), 8. p ∧ −(p ∨ −q), 18. (p ∧ −q) ⇒ (−r ⇒ p), 9. p ∧ −(p Y −q), 19. (−p ∨ q) ⇒ (p ⇒ q), 10. (p ∧ q) ⇒ (p ∨ r), 20. (p ⇒ q) ⇒ (q ⇒ p), 22. (p Y q) ∨ (p ∧ q), 23. (p ∧ q) ⇒ (−p ∨ −q), 26. (p ⇒ (q ∧ r)) ⇒ (p ⇒ r), 27. (p ∧ (p ⇒ q)) ⇔ (p ∧ −q), 28. ((p ∧ q) ∨ −(p ∨ q)) ⇒ (p ⇔ q). 2. For each of the following give an example of a proposition which is false only in the given case. 1. p, q and r are false, 4. q and r have the same truth value, different to that of p, 2. p, q and r are true, 3. p and q have the same truth value, 5. p and q are true and r is false. 3. Which propositions from 1 are logically equivalent? 1 Examples of solutions. Ex. 0.5 It is not possible to decide, for 2x + 3 = 7 is neither true nor false. For different x’s we have different results. Ex. 1.6. (−p ⇒ q) ∨ p. p 0 0 1 1 q (−p ⇒ q) 0 1 0 1 1 1 0 0 1 1 0 1 ∨ p 0 1 . 1 1 The proposition is satisfiable. It is equivalent to the alternative p ∨ q—the True/False distribution is the same. (p ⇒ q) Y (q ⇒ −p). Ex. 1.14 q (p ⇒ q) 0 1 1 1 0 0 1 1 p 0 0 1 1 Y 0 0 1 1 (q ⇒ −p) 1 1 1 1 1 0 0 0 The proposition is satisfiable and obviously equivalent to p. (p ⇒ q) ⇒ (q ⇒ p). Ex. 1.20 p 0 0 1 1 q (p ⇒ q) 0 1 1 1 0 0 1 1 ⇒ 1 0 1 1 (q ⇒ p) 1 0 1 1 The proposition is satisfiable and obviously equivalent to q ⇒ p. Ex. 1.21 p ⇒ (q ⇒ (q ⇒ p)). p 0 0 1 1 q 0 1 0 1 p⇒ 1 1 1 1 (q ⇒ (q ⇒ p)) 1 1 0 0 1 1 1 1 The proposition is a tautology. Ex. 2.5 “(p ∧ q) ⇒ r” is false only when p and q are true and r is false. Further reading. http://college.cengage.com/mathematics/larson/intermediate_algebra_gf/3e/shared/appendices/ 2263app_e1.pdf http://www.math.umn.edu/~jodeit/course/ACaRA01.pdf http://www.cl.cam.ac.uk/teaching/1112/DiscMathI/exercises.pdf 2
© Copyright 2026 Paperzz