Approach to equilibrium of diffusion in a logarithmic potential ~t1/ 2 V (x) ~ t −β ~ t1/(b+1) x ~ t −δ x1(t) x Ori Hirschberg, David Mukamel, Gunter Schütz Weizmann Institute of Science LAFNES 11, Dresden, 11.7.11 Hirschberg, Mukamel, Schütz, arxiv:1106.0458 (2011) Free diffusion V (x) x ∂ ∂ P ( x, t ) = 2 P ( x, t ) ∂t ∂x 2 Diffusion in a potential V (x) x 2 ∂ ∂ ∂ P = V ' ( x) + 2 P ∂x ∂t ∂x Diffusion in a potential V (| x |>> 1) ~ b log x x 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x Motivation 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x Appears in m a n y systems! Motivation Zero-range Process w(n) ~ 1 + b n Atoms in optical lattices w(4) w(3) w(2) DNA denaturation Diffusion in a potential: Equilibrium solution ∂ ∂ ∂2 P = V ' ( x) + 2 P ∂t ∂x ∂x V ( x) ~ b log x Diffusion in a potential: Equilibrium solution ∂ ∂ ∂2 P = V ' ( x) + 2 P ∂t ∂x ∂x V ( x) ~ b log x Boltzmann distribution: * P ( x) ~ e −V ( x ) ~x −b Diffusion in a potential: Equilibrium solution ∂ ∂ ∂2 P = V ' ( x) + 2 P ∂t ∂x ∂x Boltzmann distribution: V ( x) ~ b log x * P ( x) ~ e −V ( x ) ~x −b ∞ b ≤1 * P ∫ ( x)dx = ∞ −∞ No steady-state Diffusion in a potential: Equilibrium solution ∂ ∂ ∂2 P = V ' ( x) + 2 P ∂t ∂x ∂x Boltzmann distribution: * P ( x) ~ e V ( x) ~ b log x −V ( x ) ~x −b ∞ b ≤1 * P ∫ ( x)dx = ∞ No steady-state −∞ ∞ b >1 ∫ P ( x)dx = finite * −∞ Normalizable steady-state Diffusion in a potential: Equilibrium solution ∂ ∂ ∂2 P = V ' ( x) + 2 P ∂t ∂x ∂x Boltzmann distribution: * P ( x) ~ e V ( x) ~ b log x −V ( x ) ~x −b ∞ b ≤1 * P ∫ ( x)dx = ∞ No steady-state −∞ ∞ b >1 ∫ P ( x)dx = finite * −∞ Normalizable steady-state The question How does P(x,t) relax to equilibrium? The question How does P(x,t) relax to equilibrium? P(x) V (x) x The question How does P(x,t) relax to equilibrium? P(x) V (x) x The question How does P(x,t) relax to equilibrium? P(x) V (x) x The question How does P(x,t) relax to equilibrium? P(x) V (x) x The question How does P(x,t) relax to equilibrium? P(x) V (x) P* ( x) ~ x − b x The question How does P(x,t) relax to equilibrium? The Answer P ( x, t ) − P * ( x ) The question How does P(x,t) relax to equilibrium? The Answer P ( x, t ) − P * ( x ) ~ t1/ 2 ~ t −β ~ t1/(b+1) ~ t −δ x1(t) x Dynamics: How to calculate? Diffusion eq. ∂ ∂2 ∂ P = V ' ( x) + 2 P ∂t ∂x ∂x P( x, t ) = e −V ( x ) / 2ψ ( x, t ) Dynamics: How to calculate? Diffusion eq. ∂ ∂2 ∂ P = V ' ( x) + 2 P ∂t ∂x ∂x P( x, t ) = e −V ( x ) / 2ψ ( x, t ) Schrödinger eq. with ∂ψ ∂ 2ψ 2 = 2 − VS ( x)ψ V ( x) = V ' ( x) − V ' ' ( x) S ∂t ∂x 4 2 Dynamics: How to calculate? Diffusion eq. ∂ ∂2 ∂ P = V ' ( x) + 2 P ∂t ∂x ∂x P( x, t ) = e −V ( x ) / 2ψ ( x, t ) Schrödinger eq. with ∂ψ ∂ 2ψ 2 = 2 − VS ( x)ψ V ( x) = V ' ( x) − V ' ' ( x) S ∂t ∂x 4 2 ψ ( x, t ) = ∫ dEe a( E )ψ E ( x) − Et Dynamics in log potential: How to calculate? Diffusion eq. 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x V ( x) ~ b log x P( x, t ) ~ x − b / 2ψ ( x, t ) ( ∂ψ ∂ ψ ≈ 2 − ∂t ∂x x 2 Schrödinger eq. b b +1 2 2 2 )ψ ψ ( x, t ) = ∫ dEe a( E )ψ E ( x) − Et ψ E ~ Bessel function Decay to equilibrium in log potential V ( x) ~ x 2 V ( x) = 0 “No ground state” No gap x x2 ~ t Ground state Gap x x2 − x2 eq ~e − Egap t Decay to equilibrium in log potential V ( x) ~ x 2 V ( x) = 0 “No ground state” No gap x x2 ~ t Ground state Gap x x2 − x2 eq V ( x) ~ b log x x Ground state No gap x2 − x2 eq ~? ~e − Egap t Dynamics in log potential: How to calculate? Diffusion eq. 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x V ( x) ~ b log x P( x, t ) ~ x − b / 2ψ ( x, t ) ( ∂ψ ∂ ψ ≈ 2 − ∂t ∂x x 2 Schrödinger eq. b b +1 2 2 2 )ψ ψ ( x, t ) = ∫ dEe a( E )ψ E ( x) − Et ψ E ~ Bessel function Dynamics in log potential: How to calculate? Diffusion eq. 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x V ( x) ~ b log x P( x, t ) ~ x − b / 2ψ ( x, t ) ( ∂ψ ∂ ψ ≈ 2 − ∂t ∂x x 2 Schrödinger eq. b b +1 2 2 2 )ψ ψ ( x, t ) = ∫ dEe a( E )ψ E ( x) − Et ψ E ~ Bessel function Diffusion in log potential: Scaling P ( x, t ) − P ( x ) P * ( x) * x Diffusion in log potential: Scaling P ( x, t ) − P ( x ) P * ( x) * x at a given fixed t Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t x at a given fixed t Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t ~ t 1/ 2 ~ t −β x at a given fixed t Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t ~ t 1/ 2 ~ t −β ~ t 1/( b +1) ~t −δ x at a given fixed t Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t ~ t 1/ 2 ~ t −β ~ t 1/( b +1) ~t −δ Surprise! x at a given fixed t Scaling at small x P ( x , t ) − P * ( x ) −δ x ≈ t g γ * P ( x) t in ~ t1/(b+1) ~ t−δ x 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x Scaling at small x P ( x , t ) − P * ( x ) −δ x ≈ t g γ * P ( x) t in 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x b g ' ' ( z ) + g ' ( z ) = −[γzg ' ( z ) + δg ( z )]t −(1− 2γ ) z ~ t1/(b+1) ~ t−δ x (z = x / t γ ) Scaling at small x P ( x , t ) − P * ( x ) −δ x ≈ t g γ * P ( x) t in 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x 0 for γ < 1 / 2 b g ' ' ( z ) + g ' ( z ) = −[γzg ' ( z ) + δg ( z )]t −(1− 2γ ) z ~ t1/(b+1) ~ t−δ x (z = x / t γ ) Scaling at small x P ( x , t ) − P * ( x ) −δ x ≈ t g γ * P ( x) t in 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x 0 for γ < 1 / 2 b g ' ' ( z ) + g ' ( z ) = −[γzg ' ( z ) + δg ( z )]t −(1− 2γ ) z Solution ~ t1/(b+1) ~ t−δ x (z = x / t γ ) ~ g ( z ) = C + Cz b +1 ~ Find γ , δ , C , C from continuity, normalization. Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t ~ t 1/ 2 t 1/( b +1) << x1 (t ) << t 1/ 2 ~ t −β ~ t 1/( b +1) ~t −δ x1 (t ) x at a given fixed t Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t ~ t 1/ 2 ~ t −β x at a given fixed t What is β? P ( x, t ) − P * ( x ) − β ≈t * P ( x) x f 1/ 2 t in ~t1/ 2 ~ t −β x 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x What is β? P ( x, t ) − P * ( x ) − β ≈t * P ( x) x f 1/ 2 t in 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x u b f ' ' (u ) + − f ' (u ) + β f (u ) = 0 2 u ~t1/ 2 ~ t −β x (u = x / t 1/ 2 ) What is β? P ( x, t ) − P * ( x ) − β ≈t * P ( x) x f 1/ 2 t in 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x u b f ' ' (u ) + − f ' (u ) + β f (u ) = 0 2 u (u = x / t 1/ 2 ) Solution for every β! ~ t1/ 2 f (u ) = Cu ~ t −β x b +1 1 ( b +1 1 2 F + β; b+3 u2 ;− 2 4 ) Family of scaling solutions β <1 ⇒ f (u ) f (u ) ~ u −2 β −u 2 / 4 β =1 ⇒ f (u ) ~ e β >1 ⇒ f (u ) ~ u −2 β with oscillations f (u ) = Cu b +1 1 ( b +1 1 2 F + β; b+3 u2 ;− 2 4 ) u Surprise 2: β selected by initial condition! P ( x ,0 ) − P * ( x ) −a ~ x P * ( x) f (u) β <1 ⇒ β =1 ⇒ β >1 ⇒ f (u ) ~ u −2 β −u 2 / 4 f (u ) ~ e f (u ) ~ u −2 β with oscillations u Surprise 2: β selected by initial condition! P ( x ,0 ) − P * ( x ) −a ~ x P * ( x) a β= 2 f (u) β <1 ⇒ β =1 ⇒ β >1 ⇒ f (u ) ~ u −2 β −u 2 / 4 f (u ) ~ e f (u ) ~ u −2 β with oscillations u Surprise 3: β selected by initial condition! P ( x ,0 ) − P * ( x ) −a ~ x P * ( x) a β= 2 a 2 β = 1 f (u) β <1 ⇒ β =1 ⇒ β >1 ⇒ f (u ) ~ u −2 β −u 2 / 4 f (u ) ~ e f (u ) ~ u −2 β with oscillations u a<2 a>2 Surprise 3: Stability of solutions From exact solution: P ( x, t ) − P ( x) −1 x ~ t f1 1 / 2 * P ( x) t * Localized P ( x ,0 ) − P * ( x ) f (u) β <1 ⇒ β =1 ⇒ β >1 ⇒ f (u ) ~ u −2 β −u 2 / 4 f (u ) ~ e f (u ) ~ u −2 β with oscillations u Surprise 3: Stability of solutions From exact solution: P ( x, t ) − P ( x) −1 x ~ t f1 1 / 2 * P ( x) t * Localized P ( x ,0 ) − P * ( x ) If P ( x, t 0 ) − P * ( x ) P * ( x) =t −β 0 x f β 1/ 2 + δP t0 Localized perturbation Surprise 3: Stability of solutions From exact solution: P ( x, t ) − P ( x) −1 x ~ t f1 1 / 2 * P ( x) t * Localized P ( x ,0 ) − P * ( x ) If P ( x, t 0 ) − P * ( x ) P * ( x) =t Then P ( x, t ) − P * ( x ) P* ( x) ~ t −β −β 0 x Localized f β 1/ 2 + δP perturbation t 0 x −1 x f β 1 / 2 + t f1 1 / 2 t t Surprise 3: Stability of solutions From exact solution: P ( x, t ) − P ( x) −1 x ~ t f1 1 / 2 * P ( x) t * Localized P ( x ,0 ) − P * ( x ) If P ( x, t 0 ) − P * ( x ) P * ( x) =t Then P ( x, t ) − P * ( x ) P* ( x) ~ t −β −β 0 x Localized f β 1/ 2 + δP perturbation t 0 x −1 x f β 1 / 2 + t f1 1 / 2 t t a / 2 a < 2 β = a>2 1 Selection in diffusion problem is similar to problems of propagating fronts Propagation of fronts F-KPP equation Swift-Hohenberg eq. Fisher, Kolmogorov, Petrovsky, Piscounoff ∂φ ∂ φ = 2 + φ (1 − φ ) ∂t ∂x 2 Hallatschek & Nelson (2009) 2 ∂ ∂φ = εφ − 2 + 1 φ − φ 3 ∂t ∂x 2 Fineberg & Steinberg (1987) Propagation of fronts: Velocity selection φ (x) F-KPP equation ∂φ ∂ 2φ = 2 + φ (1 − φ ) ∂t ∂x Travelling wave solution φ ( x, t ) ≈ Φ ( x − vt ) 1 v ~ e − λx v(λ ) λ < λ* v= * * v λ > λ x Diffusion vs. Front propagation φ(x) ~ t 1/ 2 v ~ t −β ~ t1/(b+1) ~ t −δ x1 (t ) 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x x x ∂φ ∂ 2φ = 2 + φ (1 − φ ) ∂t ∂x Diffusion vs. Front propagation φ(x) ~ t 1/ 2 v ~ t −β ~ t1/(b+1) ~ t −δ x1 (t ) x 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x - Linear - Depends on space x ∂φ ∂ 2φ = 2 + φ (1 − φ ) ∂t ∂x - Non-linear - Translation invariant Diffusion vs. Front propagation φ(x) ~ t 1/ 2 v ~ t −β ~ t1/(b+1) ~ t −δ x1 (t ) x 2 ∂ ∂ b ∂ P≈ + 2 P ∂t ∂x x ∂x - Linear - Depends on space x ∂φ ∂ 2φ = 2 + φ (1 − φ ) ∂t ∂x - Non-linear - Translation invariant - Selection depends on tail - “Phase transition” in selection - Oscillating solutions are unstable What should you remember? What should you remember? ~t1/2 ~t −β ~ t1/(b+1) ~t −δ x1(t) x a 2 β = 1 a<2 a>2 What should you remember? ~t1/2 ~t −β ~ t1/(b+1) ~t −δ x1(t) x a 2 β = 1 a<2 a>2 1. Scaling at small x 2. Exponent β depends on initial condition 3. “Phase transition” for β Hirschberg, Mukamel, Schütz, arxiv:1106.0458 (2011) What should you remember? ~t1/2 ~t −β ~ t1/(b+1) ~t −δ x1(t) x a 2 β = 1 a<2 a>2 1. Scaling at small x 2. Exponent β depends on initial condition 3. “Phase transition” for β Hirschberg, Mukamel, Schütz, arxiv:1106.0458 (2011) Thank you! From scaling to moving fronts P ( x, t ) ~ t −β x f α t ξ x = e Change variables: τ t =e P(ξ ,τ ) ~ e − βτ ~ f (ξ − ατ ) Motivation: Real-space condensation For rates w(n) ~ 1 + b +K n ∂ P (n) = P (n + 1) w(n + 1) + P (n − 1) J − P (n)[ w( n) + J ] ≈ ∂t b b ≈ P (n + 1) − P(n) + P(n + 1) − 2 P( n) + P(n − 1) n +1 n w( 4) w(3) w( 2) Zero-range process - Evans, Hanney (2005) - Levine, Mukamel, Schütz (2005) … Motivation: Cold atoms in optical lattices Laser “friction” force: bp f ( p) = − 1+ p2 b V ( p) = log(1 + p 2 ) ~ b log p 2 Probability of momentum – semi-classical: ∂ ∂ ∂ W ( p, t ) = − f ( p) + W ( p, t ) ∂x ∂t ∂x - Castin, Dallibard, Cohen-Tannoudji (1991) - Marksteiner, Ellinger, Zoller (1996) - Lutz (2003) … Motivation: DNA denaturation l Entropy ~ log s l l −b Energy ~ lε 0 ∂ b ∂2 ∂ P(l) ≈ (ε / T − s ) + + 2 P(l) ∂t l ∂l ∂l at T = Tc - Poland, Scheraga (1966) - Bar, Kafri, Mukamel (2007) … Motivation: Long-range interacting gases Hamiltonian dynamics 2 N 1 N pi + 1 − cos(θ i − θ j ) H =∑ ∑ 2 N i , j =1 i =1 2 θi [ ] Relaxation of a tagged particle q = q( p) - Bouchet, Dauxois (2005) - Chavanis, Lemou (2007) … ∂ ∂ ∂2 P(q) ≈ V ' (q) + 2 P(q) ∂t ∂q ∂q V (q ) = b log q Initial distributions P ( x ,0 ) − P * ( x ) −a ~x * P ( x) P ( x , 0 ) = δ ( x − x0 ) P ( x,0) ~ P * ( x )[1 + Ax − a ] a=0 A = −1 * a<0 Leading term a>0 Sub-leading term * Levine, Mukamel, Schütz (2005) Barkai, Kessler (2010) a < 0 : Cold atoms experiment 1. Equilibrate system at b1 2. “Quench” to b2 > b1 3. Measure p2 as function of t 4. Compare with theory, a = b1 – b2 <0 P ( x,0) − P * ( x) x − b1 − x − b2 − ( b1 − b2 ) ~ x = P* ( x) x −b2 a = 1 : Move potential P(x) P* ( x) ~ ( x − 1) − b x a = 1 : Move potential P(x) x a = 1 : Move potential P(x) P ( x,0) ~ ( x − 1) −b ~ x −b (1 + bx −1 ) * P ( x) ~ x −b x a = 1 : Move potential P(x) P ( x,0) ~ ( x − 1) −b ~ x −b (1 + bx −1 ) * P ( x) ~ x −b x w( 4) w(3) w( 2) Current correlations in ZRP Zero-range process Other a’s: absorbing boundary Absorbing b.c. similar solution! But, new definition of a Important for questions of persistence & first-passage properties e.g., lifetime of DNA loop Diffusion in log potential has self-similarity of 2nd kind V (x) The limit l→0 is singular! x When b<1 No singularity V ( x) = b log x l Dimensional analysis works Diffusion in log potential: Scaling t −δ g x for x ≤ x (t ) 1/( b +1) 1 P ( x, t ) − P * ( x ) t ≈ * P ( x) t − β f 1x/ 2 for x ≥ x1 (t ) t
© Copyright 2025 Paperzz