On Rearrangements of Fourier Series On the distribution of values of orthonormal systems with restricted supports Mark Lewko Orthonormal System © := f Á1 ; Á2 ; : : : ; Án g Ái : T ! C hÁi ; Ái i = 1 hÁi ; Áj i = 0 i6 = j Meta-Question Given: © := f Á1 ; Á2 ; : : : ; Án g - µ [N ] What can we say about: X f (x) := an Án (x) n2 - Random versus - µ [N ] A lot of work to marginally beat trivial estimates Sharp (or nearly sharp) results • Stochastic processes • Metrical entropy Explicit • • • • Analytic number theory (circle method) Combinatorics (sum-product estimates) Fourier restriction theory (multilinear estimates) ? ABC Conjecture / PFR conjecture / Faltings theorem ? Theorem (Bourgain) © := f Án : n 2 [N ]g X jj jjÁi jj L 1 ¿ 1 j- j À NÃp=2 X an Án jj p ¿ n2 - n ! 1=2 jan j 2 (Random) No explicit examples (unless p is even integer) Finite Field Restriction Estimates © := f e(n ¢x) : n 2 F3p g - := f e(n) : n 2 Pg P := f (n1 ; n2 ; n21 + n22 ) : n1; n2 2 F2p g ¯¯ ¯¯X ¯¯ ¯¯ ¯¯ n2 P ¯¯ ¯¯ ¯¯ an e(n ¢x) ¯¯ ¯¯ ¿ jFj 1¡ 3=p ³X jan j 2 Lp Conjectured for p ¸ 3 and ¡ 1 not a square. ´ 1=2 Compressed Sensing © := f Án : n 2 [N ]g X X j ai Ái (x)j 2 = i x 2 [N ] X jai j 2 i 2 [N ] - µ [N ] X X j y2 - i j- j X ai Ái (x)j » N 2 i 2 [N ] jai j 2 Compressed Sensing II Theorem (Candes-Tao / Rudelson-Vershynin) © := f Án : n 2 [N ]g A = (a1 ; a2; : : : ; an ) j- j X (1 ¡ ²) N i 2 [N ] 2 X X j jai j · y2 - i jjA jj 0 = R j- j X ai Ái (x)j · (1 + ²) N 2 r log4 (n) ¿ j- j 2 ² i 2 [N ] jai j 2 Rearrangements of Fourier Series © := f Á1 ; Á2 ; : : :g X X f (x) = an Án (x) f (x) a.e. = lim `! 1 an Án (x) n· ` Kolmogorov (1920’s) Does there exist a ¼: N ! N such that: X f (x) = lim a.e.` ! 1 a¼(n)Á¼( n ) (x)? n· ` Rearrangements of Fourier Series II X © := f Á1 ; Á2 ; : : :g f (x) = an Án (x) ¯ ¯ ¯ ¯ ¯X ¯ ¯ M f (x) = max ¯ an Án (x) ¯ ¯ ` ¯ ¯ n· ` Rademacher-Menshov X jjM f jj L 2 ¿ log(N )( jan j 2 ) 1=2 Bourgain ¯ ¯ ¯ ¯ ¯X ¯ ¯ M ¼f (x) = max ¯ a¼( n ) Á¼( n ) (x) ¯ ¯ ` ¯ ¯ n· ` X jjM ¼f jj L 2 ¿ loglog(N )( jan j 2 ) 1=2 Rearrangements of Fourier Series III ¯ ¯ ¯ ¯ ¯X ¯ ¯ M ¼f (x) = max ¯ a¼( n ) Á¼( n ) (x) ¯ ¯ ` ¯ ¯ n· ` ¯ ¯ ¯X ¯ ¯ ¯ ¯ a¼( n ) Á¼( n ) (x) ¯ ¯ ¯ n2 I ¯ ¯ ¯X ¯ ¯ ¯ a Á (x) ¯ ¯ ¼( n ) ¼( n ) ¯ ¯ n2 - j- j = jI j Thank You!
© Copyright 2025 Paperzz