Chapter 15 Kinematics of Rigid Bodies 1 Introduction • Kinematics of rigid bodies: relations between time and the positions, velocities, and accelerations of the particles forming a rigid body. • Classification of rigid body motions: - translation: - rectilinear translation - curvilinear translation - rotation about a fixed axis - general plane motion - motion about a fixed point - general motion 2 Translation • Consider rigid body in translation: - direction of any straight line inside the body is constant, - all particles forming the body move in parallel lines. • For any two particles in the body, rB rA rB A • Differentiating with respect to time, rB rA rB A rA vB v A All particles have the same velocity. • Differentiating with respect to time again, rB rA rB A rA aB a A All particles have the same acceleration. 3 Rotation About a Fixed Axis. Velocity • Consider rotation of rigid body about a fixed axis AA’ • Velocity vector v dr dt of the particle P is tangent to the path with magnitude v ds dt s BP r sin v ds lim r sin r sin dt t 0 t • The same result is obtained from dr v r dt k k angular velocity 4 Rotation About a Fixed Axis. Acceleration • Differentiating to determine the acceleration, dv d a r dt dt d dr r dt dt d r v dt d angular acceleration • dt k k k • Acceleration of P is combination of two vectors, a r r r tangential acceleration component r radial acceleration component 5 Rotation About a Fixed Axis. Representative Slab • Consider the motion of a representative slab in a plane perpendicular to the axis of rotation. • Velocity of any point P of the slab, v r k r v r • Acceleration of any point P of the slab, a r r k r 2r • Resolving the acceleration into tangential and normal components, at k r a t r an 2 r an r 2 6 Equations Defining the Rotation of a Rigid Body About a Fixed Axis • Motion of a rigid body rotating around a fixed axis is often specified by the type of angular acceleration. • Recall d dt or dt d d d 2 d 2 dt d dt • Uniform Rotation, = 0: 0 t • Uniformly Accelerated Rotation, = constant: 0 t 0 0t 12 t 2 2 02 2 0 7 General Plane Motion • General plane motion is neither a translation nor a rotation. • General plane motion can be considered as the sum of a translation and rotation. • Displacement of particles A and B to A2 and B2 can be divided into two parts: - translation to A2 and B1 - rotation of B1 about A2 to B2 8 Absolute and Relative Velocity in Plane Motion • Any plane motion can be replaced by a translation of an arbitrary reference point A and a simultaneous rotation about A. vB v A vB A vB A k rB A vB A r vB v A k rB A 9 Absolute and Relative Velocity in Plane Motion • Assuming that the velocity vA of end A is known, wish to determine the velocity vB of end B and the angular velocity in terms of vA, l, and . • The direction of vB and vB/A are known. Complete the velocity diagram. vB tan vA v B v A tan vA = vA = cos v B A l = vA l cos 10 Absolute and Relative Velocity in Plane Motion • Selecting point B as the reference point and solving for the velocity vA of end A and the angular velocity leads to an equivalent velocity triangle. • vA/B has the same magnitude but opposite sense of vB/A. The sense of the relative velocity is dependent on the choice of reference point. • Angular velocity of the rod in its rotation about B is the same as its rotation about A. Angular velocity is not dependent on the choice of reference point. 11 Sample Problem 15.3 SOLUTION: • Will determine the absolute velocity of point D with vD vB vD B • The velocity v B is obtained from the given crank rotation data. • The directions of the absolute velocity v The crank AB has a constant clockwise D and the relative velocity v D B are deterangular velocity of 2000 rpm. mined from the problem geometry. For the crank position indicated, • The unknowns in the vector expression determine (a) the angular velocity of are the velocity magnitudes vD and vD B the connecting rod BD, and (b) the which may be determined from the velocity of the piston P. corresponding vector triangle. • The angular velocity of the connecting rod is calculated from v D B . 12 Sample Problem 15.3 7.6 cm SOLUTION: (Graphical Method) • Will determine the absolute velocity of point D with vD vB vD B • The velocity vB is obtained from the crank rotation data. rev min 2π rad ωAB 2000 209.4 rad s min 60 s rev v B AB ωAB 7.6 cm.209.4 rad s 1591.44cm/s The velocity direction is as shown. • The direction of the absolute velocity vD is horizontal. The direction of the relative velocity vD B is perpendicular to BD. Compute the angle between the horizontal and the connecting rod from the law of sines. sin40 sinβ 20.3cm. 7.6 cm. β 13.95 13 Sample Problem 15.3 • Determine the velocity magnitudes vD and vD B from the vector triangle. v D B 1591.44cm. s vD sin53.95 sin50 sin76.05 vB =1591.44 cm/s v D/B 1256.16cm. s v D/B 1256.16cm./s 76.05o v D 1325.78cm. s v D 1325.78cm./s vD vB vD B v P v D 1325.78cm./s v D B lω BD vD B 1256.16cm. s l 20.3 cm. 61.88 rad s ω BD ωBD 61.88 rad s k 14 Sample Problem 15.3 Solution (Vector Method) sin40 sinβ 20.3cm. 7.6 cm. β 13.95 rev min 2π rad ω AB 2000 209.4 rad s min 60 s rev v B v A v B/A ; v A 0 v B v B/A ω AB rB/A o o v B 209.44k 0.076cos40 i 0.076sin40 j v B 10.23 i 12.19 j 15 Sample Problem 15.3 v D v B v D/B v B ω BD rD/B v D i 10.23 i 12.19 j ω BD k 0.203cos13.92 i 0.203sin13.92 j v D i 10.23 i 12.19 j 0.197ω BD j 0.0488ω BD i Consider in each components i ; v D 10.23 0.0488ω BD j ; 0 12.19 0.197ω BD ω BD 61.88 rad/s v D 10.23 0.0488 61.88 13.25 m/s 16 Instantaneous Center of Rotation in Plane Motion • Plane motion of all particles in a slab can always be replaced by the translation of an arbitrary point A and a rotation about A with an angular velocity that is independent of the choice of A. • The same translational and rotational velocities at A are obtained by allowing the slab to rotate with the same angular velocity about the point C on a perpendicular to the velocity at A. • The velocity of all other particles in the slab are the same as originally defined since the angular velocity and translational velocity at A are equivalent. • As far as the velocities are concerned, the slab seems to rotate about the instantaneous center of rotation C. 17 Instantaneous Center of Rotation in Plane Motion • If the velocity at two points A and B are known, the instantaneous center of rotation lies at the intersection of the perpendiculars to the velocity vectors through A and B . • If the velocity vectors are parallel, the instantaneous center of rotation is at infinity and the angular velocity is zero. • If the velocity vectors at A and B are perpendicular to the line AB, the instantaneous center of rotation lies at the intersection of the line AB with the line joining the extremities of the velocity vectors at A and B. • If the velocity magnitudes are equal, the instantaneous center of rotation is at infinity and the angular velocity is zero. 18 Instantaneous Center of Rotation in Plane Motion • The instantaneous center of rotation lies at the intersection of the perpendiculars to the velocity vectors through A and B . v v v v B BC l sin A A A l cos AC l cos v A tan • The velocities of all particles on the rod are as if they were rotated about C. • The particle at the center of rotation has zero velocity. • The particle coinciding with the center of rotation changes with time and the acceleration of the particle at the instantaneous center of rotation is not zero. • The acceleration of the particles in the slab cannot be determined as if the slab were simply rotating about C. • The trace of the locus of the center of rotation on the body is the body centrode and in space is the space centrode. 19 Sample Problem 15.5 SOLUTION: • Determine the velocity at B from the given crank rotation data. The crank AB has a constant clockwise angular velocity of 2000 rpm. For the crank position indicated, determine (a) the angular velocity of the connecting rod BD, and (b) the velocity of the piston P. • The direction of the velocity vectors at B and D are known. The instantaneous center of rotation is at the intersection of the perpendiculars to the velocities through B and D. • Determine the angular velocity about the center of rotation based on the velocity at B. • Calculate the velocity at D based on its rotation about the instantaneous center of rotation. 20 Sample Problem 15.5 SOLUTION: • From Sample Problem 15.3, v B 1023 i 1219j cm. s v B 1591.44cm. s 50o β 13.95 • The instantaneous center of rotation is at the intersection of the perpendiculars to the velocities through B and D. B 40 53.95 D 90 76.05 BC CD 20.3 cm. sin76.05 sin53.95 sin50 BC 25.7 cm. CD 21.4 cm. • Determine the angular velocity about the center of rotation based on the velocity at B. v B BC ω BD ω BD v B 1591.44cm. s BC 25.7 cm. ωBD 61.88 rad s • Calculate the velocity at D based on its rotation about the instantaneous center of rotation. v D CD ωBD 21.4 cm.61.88 rad s v P v D 1325cm. s 21 Absolute and Relative Acceleration in Plane Motion • Absolute acceleration of a particle of the slab, aB a A aB A • Relative acceleration a B A associated with rotation about A includes tangential and normal components, a B A k rB A a B A r t aB A n 2 rB A t a B A n r 2 22 Absolute and Relative Acceleration in Plane Motion • Given a A and v A , determine a B and . aB a A aB A a A a B A a B n • Vector result depends on sense of a A and the relative magnitudes of a A and a B A n • Must also know angular velocity . 23 A t Absolute and Relative Acceleration in Plane Motion • Write a B a A a B x components: A in terms of the two component equations, 0 a A l 2 sin l cos y components: a B l 2 cos l sin • Solve for aB and . 24 Sample Problem 15.7 SOLUTION: • The angular acceleration of the connecting rod BD and the acceleration of point D will be determined from aD aB aD B aB aD B aD B t n • The acceleration of B is determined from the given rotation speed of AB. Crank AG of the engine system has a constant clockwise angular velocity of 2000 rpm. • The directions of the accelerations are a D , a D B , and a D B t n determined from the geometry. For the crank position shown, determine the angular acceleration of the connecting rod BD and the acceleration of point D. • Component equations for acceleration of point D are solved simultaneously for acceleration of D and angular acceleration of the connecting rod. 25 Sample Problem 15.7 SOLUTION: • The angular acceleration of the connecting rod BD and the acceleration of point D will be determined from aD aB aD B aB aD B aD B t n • The acceleration of B is determined from the given rotation speed of AB. ω AB 2000 rpm 209.4 rad s constant α AB 0 7.6 cm aB aB aB aB aB a A a B/A a A a B/A t a B/A n ; a A a B/A t 0 ω 2AB rB/A 209.442 0.076cos40o i 0.076sin40o j 2553.8 i 2142.89j 3333.74 m/s 2 40o 26 Sample Problem 15.7 Assign a D a D i and α BD α BD k a D a B a D/B t a D/B n a D a B α BD rD/B ω 2BD rD/B a D 2553.8 i 2142.89j o o α BD k 0.203cos13.92 i 0.203sin13.92 j 2 o o 61.88 0.203cos13.92 i 0.203sin13.92 j a D i 2553.8 i 2142.89j 0.197α BD j 0.0488α BD i 754.34 i 186.86j 27 Sample Problem 15.7 a D i 2553.8 i 2142.89j 0.197α BD j 0.0488α BD i 754.34 i 186.86j Consider in each components i ; a D 2553.8 0.0488α BD 754.34 a D 0.0488α BD 3308.14 j ; 0 2142.89 0.197α BD 186.86 α BD 9929.09 rad/s 2 a D 2823.6 m/s 2 , 2823.6 m/s 2 28 Sample Problem 15.8 SOLUTION: • The angular velocities are determined by simultaneously solving the component equations for vD vB vD B In the position shown, crank AB has a constant angular velocity 1 = 20 rad/s counterclockwise. • The angular accelerations are determined by simultaneously solving the component equations for aD aB aD B Determine the angular velocities and angular accelerations of the connecting rod BD and crank DE. 29 Sample Problem 15.8 SOLUTION: • The angular velocities are determined by simultaneously solving the component equations for vD vB vD B v D v E ω DE rD/E ω DE k 17 i 17 j 17ω DE i 17ω DE j v B v A ωAB rB/A 20k 8 i 14 j 280 i 160j v D B ωBD rD B ωBD k 12 i 3 j 3ωBD i 12ωBD j x components: 17ωDE 280 3ωBD y components: 17ωDE 160 12ωBD ωBD 29.33rad sk ωDE 11.29rad sk 30 Sample Problem 15.8 • The angular accelerations are determined by simultaneously solving the component equations for aD aB aD B a D α DE rD/E ω 2DE rD/E 2 α DE k 17 i 17 j 11.29 17 i 17 j 17α DE i 17α DE j 2170 i 2170 j 2 2 a B α AB rB/A ω AB rB/A 0 20 8 i 14 j 3200 i 5600j a D B α BD rB D ω 2BD rB D 2 α BD k 12 i 3 j 29.33 12 i 3 j 3α BD i 12α BD j 10,320 i 2580j x components: y components: 17α DE 3α BD 15,690 17α DE 12α BD 6010 2 2 α BD 645 rad s k α DE 809 rad s k 31 Problem 1 ก้าน AB หมุนรอบจุด A ด้วยความเร็ วรอบคงที่ 900 rpm ในทิศทาง ตามเข็มนาฬิกา จงหาความเร่ งของจุด P เมื่อ = 60o 32 Problem 1 ขั้นตอนการแก้ปัญหา rB / A 1. หาเวคเตอร์ ระบุตาแหน่ ง v B และความเร็ วเชิงมุม AB 2. หาความเร็ ว 3. หาความเร่ ง aB 4. หาเวคเตอร์ ระบุตาแหน่ ง rD / B 5. หาความเร็ ว v และความเร็ วเชิ งมุม BD D 6. หาความเร่ ง a D 33 Problem 1 rB / A ขั้นตอนที่ 1 : หาเวคเตอร์ระบุตาแหน่ง o o rB / A 0.051sin60 i 0.051cos60 j vB ขั้นตอนที่ 2 : หาความเร็ ว 900 2 π ω AB k 94.25k cons tan t, α AB 0 60 v B v A v B/A v B v A ω AB rB/A o o v B 0 94.25k 0.051sin 60 i 0.051 cos 60 j v B 4.16 j 2.4 i m/s 4.8 m/s 60 o 34 Problem 1 ขั้นตอนที่ 3 : หาความเร่ ง a B aB aB aB aB aB a A a B/A a A a B/A t a B/A n ; a A a B/A t 0 2 2 o o ω AB rB/A 94.25 0.051sin 60 i 0.051cos 60 j 392.36 i 226.52 j 453.06 m/s 2 30o 35 Problem 1 ขั้นตอนที่ 4 : หาเวคเตอร์ระบุตาแหน่ง rD / B 15.2 5 .1 sin 60 o sin D 16.89 o 180 o 60 o 16.89 o 15.2 cm 103.11o 103.11 30 o 73.11o o 60o B 5.1 cm A o o rD / B 0.152 cos 73.11 i 0.152 sin 73.11 j 36 Problem 1 v ขั้นตอนที่ 5 : หาความเร็ ว และความเร็ วเชิงมุม D BD Assign BD BD k, v D v D j v D v B v D/B v B ω BD rD/B o o v D j 2.4 i 4.16 j ω BD k -0.152 cos 73.11 i 0.152 sin 73.11 j v D j 2.4 i 4.16 j 0.044ω BD j 0.145ω BD i Consider in each components i ; 0 2.4 0.145ω BD ω BD 16.506 rad/s j ; v D 4.16 0.044ω BD 4.16 0.04416.506 4.886 m/s 4.886 m/s 37 Problem 1 ขั้นตอนที่ 6 : หาความเร่ ง aD Assign a D a D j and α BD α BD k a D a B a D/B t a D/B n a D a B α BD rD/B ω 2BD rD/B a D 392.36 i 226.52 j o o α BD k -0.152 cos 73.11 i 0.1523 sin 73.11 j 2 o o 16.506 -0.152 cos 73.11 i 0.1523 sin 73.11 j a D j 392.36 i 226.52 j -0.044 α BD j -0.1454 α BD i 11.9877 i -39.6139 j 38 Problem 1 a D j 392.36 i 226.52 j -0.044 α BD j -0.1454 α BD i 11.9877 i -39.6139 j Consider in each components i ; 0 392.3649 0.1454α BD 11.9877 α BD 2616.07 rad/s 2 2616.07 rad/s 2 j ; a D 226.5181 0.044α BD 39.6139 226.5181 0.044 2616.07 -39.6139 151.0249 m/s 2 151.0249 m/s 2 39 Problem 2 กลไกดังรู ปถูกใช้ในเครื่ องยนต์ของเรื อดาน้ า ซึ่งประกอบด้วยก้านเดี่ยว AB ก้านต่อ BC และ BD จงหาความเร็ วของจุด C ที่ตาแหน่งดังรู ป โดยก้าน AB หมุนด้วยความเร็ วเชิงมุมคงที่ 5 rad/s ในทิศทางตามเข็มนาฬิกา 40 Problem 3 จากชุดกลไกที่แสดงดังรู ป กาหนดให้กา้ น AB เคลื่อนที่ในทิศทางหมุนตาม เข็มนาฬิกา ด้วยความเร็ วเชิงมุมคงที่ 6 rad/s จงหาความเร่ งของจุด D 41 Problem 4 ก้าน BD ยาว 300 mm และก้าน AB หมุนด้วยความเร็ วรอบคงที่ 300 rpm ใน ทิศทางทวนเข็มนาฬิกา จงหาความเร่ งของจุด D เมื่อ = 90o 42
© Copyright 2026 Paperzz