ma2149a6 1. Multiple Integrals Evaluate the following double integrals: xy dxdy , where S is the region bounded by the lines x = 0, x = 1, y = x 2 and y = 4. (a) S x (b) 2 dxdy , where S is the region bounded by y 2 x and x 2 y 8 . S Sol: (a) 4 1 47 xy dxdy xy dy S 0 2 dx ... 4 12 12 x 1 (b) y 2x y 2x y 2x y 2x x 4 x 2 2 or 2 x y 8 x 2x 8 0 ( x 4)( x 2) 0 x 4 or x 2 y 8 y 4 8 x 2 S x dxdy 4 2x x dy dx ... 2 2 2 192 211.2 120 100.8 2. Evaluate xy dxdy where S is the region enclosed by the 4 parabolas y 2 x , y 2 2x , S x 2 y , x 2 2 y using the change of variable u = x2 y2 . ,v y x Sol: x2 y2 , the boundaries y 2 x goes to v 1 , ,v y x 2 2 y 2 x to v 2 , x y to u 1 and x 2 2 y to u 2 . And the region S in x-y plane which are Under the transformations u = enclosed by the 4 parabolas y 2 x , y 2 2 x , x 2 y , x 2 2 y goes to the region S in u-v plane which are enclosed by the lines u 1, u 2, v 1, v 2 ( x, y ) 1 1 ... (u , v) (u , v) 3 ( x, y ) Therefore, J 3 xy dxdy uv J dudv ... 4 S S 1 3. Evaluate E z = 0z 4 0 ( x S 1 2 y z ) 2 2 3 dxdy where S is the disc x 2 y 2 a 2 , which 2 represents the z-component of the electric field at the point (0, 0, z) due to a uniformly charged circular disc lying in x 2 y 2 a 2 , z = 0. Sol: x 2 y 2 r 2 , dxdy rdrd 0z Ez= 4 0 2 0 z 4 0 0 S a 3 2 2 (x y z ) 2 2 rdr 3 (r 2 z 2 ) 2 z 0 20 2 dr 3 ( r 2 z 2 ) 2 z dxdy 0 4 0 0 0 a 1 1 1 1 z 2 2 2 (a z ) z 0 0 20 a 1 (r 2 z 2 ) 2 rd 1 Let R be the region bounded by x y 1 , x = 0, y = 0. Show that 4. x y cos x y dx dy = R sin 1 , using the substitution x - y = u , x + y = v . 2 Sol: x y 1 v 1, x 0 u v 0, y 0 u v 0 x uv x y u 2 , Jacobian= u vu y x y v y 2 u x x y 1 u x v 1 / 2 y v cos x y dx dy = 2 cos v du dv ... R R' 5. Evaluate sin 1 2 xe dxdy , where R denote the region inside x y 2 y 2 1 but outside R x 2 y 2 2 y with x 0, y 0 , using the change of variable u x 2 y 2 , v x 2 y 2 2 y . Sol: 1 e2 3 2 2 6. Evaluate e xy dxdy where S is the region enclosed by xy 1 , xy 2 , y x , y 4 x using S the change of variable xy u , y v. x Sol: xy 2 e dS ... e e ln 4 S Use the change of variables x y u , x y v to evaluate 7. e ( x y ) dxdy . x y 1 Sol: x y 1 is equivalent to the region bounded by x y 1, x y 1, x y 1, x y 1 . Under the transformations: x y u , x y v , x y 1 goes to u 1, x y 1 goes to u 1 , x y 1 goes to v 1 and x y 1 goes to v 1. ( x, y ) 1 1 1 The Jacobian J . (u , v) (u , v) 2 1 1 det ( x, y ) 1 1 So e ( x y ) x y 1 1 v 1 ev e dxdy e J dudv dvdu 2 2 1 x1 1 1 1 1 v 1 1 1 1 du e e 1 du e e 1 . 2 1 1 y 1 8. Evaluate dxdydz (1 x y z) 3 , where V is the region bounded by the planes: V x y z 1, x 0, y 0, z 0 . Sol: 1 x y dxdydz 1 dz dxdy 3 3 ( 1 x y z ) ( 1 x y z ) V S 0 where S is the region bounded by x y 1, x 0, y 0 . Then 1 1 x 1 x y 1 x y dxdydz 1 1 dz dxdy dz 3 0 0 0 (1 x y z )3 dy dx (1 x y z )3 ( 1 x y z ) V S 0 1 1 x 1 x 1 x y 1 1 1 dy dx 0 0 2(1 x y )2 8 dy dx 0 2(1 x y z ) 2 0 0 1 3 1 1 1 1 x 1 y 1 x 1 dx dx 0 2 ( 1 x y ) 8 4 8 2 ( 1 x ) 0 0 x2 x x 1 2 ln( 1 x ) 1 1 1 1 ln 2 5 1 ln 2 8 2 16 2 4 0 4 16 2 Find the volume of the region bounded by the surfaces z x 2 , z 0 , y x 2 and 9. y 2 x 3 . Notice the relationship between the double and triple integrals which give this volume. Sol: 32 10. A solid tyre of outer radius a + b has a circular cross-section of radius a and consists of material of constant density . Evaluate the mass of the tyre. Use cylindrical polar coordinates with the z-axis along the axis of revolution (i.e. the axle) of the tyre. Evaluate the moment of inertia about the z-axis and express the result in terms of the mass. Sol: 2 b mass dxdydz V a 0 b a a 2 1 2 r dr d dz 2 2 a 0 2 r a z a2 z 2 b a 2 z 2 b a z 2 2 d dz a 2 a 2b a 2 z 2 d dz 4b a 2 z 2 dz a 0 a 2 2 2 4b a(cos )a cos d 4a 2b cos 2 d 4a 2b z a sin 2 2 2 a b 2 2 4 2 1 cos 2 d 2 2 b moment of inertia r dxdydz V a 0 b a 2 a 2 1 b a 2 z 2 4 a 0 b 4 a 2 1 4 r dr d dz a 0 4 r a2 z2 a2 z2 3 4 a 2 z 2 d dz 4 4 a 1 4 a 2 z 2 a 2 z 2 b 1 1 dz 2 b 2 b 2 b 2 b 2 a 1 4 b z a sin 2 4 4 a a 1 cos 1 cos a cos d b b 2 2 3 2 2 a 2b b 2 a 2 4 -End- 5 b a 2 z 2 b a z 2 2 d dz
© Copyright 2026 Paperzz