CALCULUS 2 Name: _____________________________ WORKSHEET 11.1 Evaluate the sum: 5 1. 3n 1 n 2 2 2. 3 4 n 3. n 2 1 n n 1 n! n 1 Rewrite the series using sigma notation: 4. 6 16 26 ... 5. 120 60 30 ... 15 16 1 4 9 16 6. ... 3 9 27 81 Rewrite the sequence using bracket notation: 7. 11 , 7 , 3 , ... 8. 4 , 6 , 9 , 13.5 , 20.25 , ... 27 64 1 8 9. 1 , 1 , 1 , 1 ,... 7 9 3 5 Determine if the sequence converges or diverges. If it converges, find the value: 2n 3 10. 3n 1 4n 3n 2 11. 3 5n 1 13. n 2 e 3n 14. 0 , 1 2 3 , , , ... 16 81 256 n 12. ln n 1 1 1 15. 1 , , 1 , , 1 , , ... 2 3 4 CALCULUS 2 Name: _____________________________ WORKSHEET 11.2 Using the appropriate test for monotonicity, define the sequence as increasing, decreasing, nondecreasing, non-increasing, eventually increasing or eventually decreasing. If the sequence eventually increases or decreases, determine the value for which it changes: Use the difference test: n 1 1. n 2 2. 2n 2 3n 3. n 2 3n Use the ratio test: n 1 4. n 2 5n 5. n 4 1 n! 6. n 7 Use the derivative test: n 1 7. n 2 1 8. 3 n 9. 4n 11. n 3 n 5! 12. n 1! Use any test: 10. n 3 3n 2 tan n 1 CALCULUS 2 Name: _____________________________ WORKSHEET 11.3 Evaluate the sum, if possible: 1. 1 n 0 7 4. k 1 n 4 k 1 k 1 7 2. k 1 5. 3 2 4 e n 1 k 3. n 1 6. n9 1 n 1 8 n 2 1 4 n 1 n Rewrite the decimal as a fraction: 7. 0.2121212121…. 8. 0.013013013013… 9. 6.222222… Determine if the series converges or diverges by evaluating the sequence of partial sums: 10. 1 1 k 1 k 2 k n 5 n 1 n 2 11. 12. k 2 3 k 1 2 3 k2 CALCULUS 2 Name: _____________________________ WORKSHEET 11.4 Determine whether the series converges or diverges. Evaluate the sum, if possible: 1. n 2 k 1 2. 2 n 1 4. 1 3 4 k 1 k 10. 4 3k 3 k 1 2 2 n 1 1 n 6. 76 n 11. ke n 1 12. k 2 k 1 2 15. 2 k2 k 2 1 k 1 k 1 1 7 4k 2 3k 2 kln k k 2 1 n3 9. k 2 14. 5 n7 n 0 n2 1 2 5 8. 13. n 1 2 n 2 3 n 1 n 1 n 3. 5. 7. n 0 k2 1 k3 CALCULUS 2 Name: _____________________________ WORKSHEET 11.5 Determine whether the series converges or diverges. Evaluate the sum, if possible: 1. 6n n 1 n! 4. k 1 3k k5 5n 7. n 1 3n! 2. k 1 5. n 1 n2 n 1 n! k! k 10 3. n3 2n ! n2 1 6. n 2 n 1 1 8. k k 1 3 k 9. 1 2 3 4 ... 3 9 27 81 CALCULUS 2 CHAPTER 11 REFERENCE SHEET SEQUENCES Convergence or Divergence evaluate lim n same same small big big small (use L’Hopital’s Rule, if necessary) converges to the ratio of the leading coefficients converges to 0 diverges Monotonicity Difference Test evaluate a n 1 a n > 0 incr. ≥ 0 non-decr. < 0 decr. ≤ 0 non-incr. Ratio Test evaluate a n 1 an > 1 incr. ≥ 1 non-decr. < 1 decr. ≤ 1 non-incr Derivative Test evaluate f x > 0 incr. ≥ 0 non-decr. < 0 decr. ≤ 0 non-incr . SERIES Convergence or Divergence Partial Sums study the sequence of the partial sums if it converges, then the series converges if it diverges, then the series diverges Infinite Geometric Series if −1 < r < 1, then the series converges to a1 1 r Divergence Test an evaluate nlim ≠ 0 the series diverges = 0 inconclusive Integral Test let f x a n and if f is positive and decreasing, then evaluate if the integral converges, then the series converges if the integral diverges, then the series diverges P-series of the form 1 k k 1 p if p > 1, then the series converges if 0 < p ≤ 1, then the series diverges Ratio Test let lim n a n 1 an if ρ < 1, then the series converges if ρ > 1, then the series diverges if ρ = 1, then the test is inconclusive f x dx k CALCULUS 2 CHAPTER 11 TEST REFERENCE SHEET SEQUENCES Monotonicity Difference Test > 0 incr. ≥ 0 non-decr. < 0 decr. ≤ 0 non-incr. Ratio Test > 1 incr. ≥ 1 non-decr. < 1 decr. ≤ 1 non-incr Derivative Test > 0 incr. ≥ 0 non-decr. < 0 decr. ≤ 0 non-incr . SERIES Convergence or Divergence Partial Sums Infinite Geometric Series Divergence Test ≠ 0 the series diverges = 0 inconclusive Integral Test if the integral converges, then the series converges if the integral diverges, then the series diverges P-series if p > 1, then the series converges if 0 < p ≤ 1, then the series diverges Ratio Test if ρ < 1, then the series converges if ρ > 1, then the series diverges if ρ = 1, then the test is inconclusive CALCULUS 2 Name: _____________________________ PRACTICE CHAPTER 11 TEST Evaluate the sum: 5 2 1. 2n 2. n 3 n 1 1 n 1 n2 n 1! Rewrite the series using sigma notation: 3. 18 11 4 ... 4. 2 3 4 5 10 ... 8 27 64 729 Rewrite the sequence using bracket notation: 5. 1 1 3 81 , , ,..., 6 2 2 2 6. 1 2 6 24 120 , , , , ... 4 1 0 1 4 Determine if the sequence converges or diverges. If it converges, find the value: 4 n 5 7. 5 7 n 8. n e 3 2 n Using the appropriate test for monotonicity, define the sequence as increasing, decreasing, nondecreasing, non-increasing, eventually increasing or eventually decreasing. If the sequence eventually increases or decreases, determine the value for which it changes: Use the difference test: Use the ratio test: Use the derivative test: n 3 9. n 3 10. 3n! en 11. n n Use any test: 12. 3n 2 12n 1 4n 13. n 1 2 Evaluate the sum, if possible: 14. n 0 3 n 15. n 1 n 4 1 n 1 5 n 1 Rewrite the decimal as a fraction: 16. −5.027027027027… Use the appropriate test to determine if the series converges or diverges. Evaluate the sum, if possible: Use the divergence test: 5n 2 3 2 n 1 2n 1 Use the integral test: 17. Use the P-series test: 19. 2n 3 4 18. 2 n ln n n 2 Use the ratio test: 20. n 1 3n ! n 1 n2 Use any test: 21. n 1 23. n2 en 1 3 n 1 n 3 22. n3 n n 1 10 24. n 1 4 n5
© Copyright 2026 Paperzz