Static-neighbor-Graph-based prediction Present by Yftah Ziser January 2015 Description • The Static-neighbor-Graph method predicts the primary users spectrum utilization by constructing an empirical probabilistic graph of primary users mobility. How to build the graph? • 1)if SU observe PU movement from point I to point j 1.1)if the edge (i,j) doesn't exist 1.1.1)add edge (i,j) with the weight of 1 1.2)else 1.2.1)add 1 to the weight of the edge (i,j) Simple Example Simple Example Simple Example Directed graph Simple Example Simple Example Simple Example Simple Example How to use the graph for prediction? • Assuming that the current location of the PU is represented by vertex i, our prediction for the next location is j such that edge (i,j) has the maximum weight . Simple Example Simple Example Simple Example – with a conflict Simple Example – with a conflict Reduction to our problem • What we have Algorithm for predicting the next PU location. • What we want Algorithm for predicting the spectrum holes. The reduction is quite simple. The reduction • Assuming we know all the Primary users locations we can know injectively which of the spectrum beans are idle. • We would like to relate to the option of predicting that some of the stations stay in the same frequency for the next few intervals. For this purpose the algorithm allows selfloops. Self-loops • In order to differ as possible the SNG algorithm from Hold, a the weights on selfloops edges will be factored (0.1 in our case). pros • The time and space complexity are very low (predicting and training). pros • Can work with large number of data representations (including all the representations we introduced in the seminar). cons • The prediction for the next step and N steps ahead are the same. cons • The prediction for the next step and N steps ahead are the same. • Work well in absolute patterns but very inaccurate for relative ones. Results • In the following tables we present the relative error of the frequency prediction for each time interval ahead (the "n" row). i.e. the relative frequency error formula given by Results • The NW lines means that for each interval the window size used is 10*i. The BW lines means that the window size is the minimum sum of all the intervals errors (for the SNG algorithm). Results 101 n SNG NW SNG BW Hold 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 The best window is 10 Results 201 n 1 2 3 4 5 6 7 8 9 10 0.3189 0.1764 0.2860 0.2435 0.3035 0.2247 0.2376 0.2481 0.2251 0.2824 SNG NW 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 SNG BW 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 Hold The best window is 20 Results 301 1 2 3 4 5 6 7 8 9 10 n SNG NW SNG BW 0.2826 0.2822 0.2332 0.5565 0.1480 0.1093 0.1066 0.1060 0.1172 0.1239 0.1350 0.1454 0.1340 0.1311 0.1128 0.1303 0.1212 0.1313 0.1163 0.1093 0.1203 0.1203 0.1290 0.1149 0.126 0.1250 0.1407 0.1407 0.1337 0.1364 Hold The best window is 60 Results 301 1 2 3 4 5 6 7 8 9 10 n SNG NW SNG BW 0.2826 0.2822 0.2332 0.5565 0.1480 0.1093 0.1066 0.1060 0.1172 0.1239 0.1350 0.1454 0.1340 0.1311 0.1128 0.1303 0.1212 0.1313 0.1163 0.1093 0.1203 0.1203 0.1290 0.1149 0.126 0.1250 0.1407 0.1407 0.1337 0.1364 Hold The best window is 60 Results 401 1 2 3 4 5 6 7 8 9 10 n SNG NW 0.1124 0.1213 0.1209 0.1567 0.2644 0.3227 0.2786 0.3787 0.4547 0.3991 0.1011 0.1167 0.1209 0.1272 0.1296 0.1624 0.1522 0.1530 0.1341 0.1238 SNG BW Hold 0.0882 0.0953 0.0994 0.1071 0.1061 0.1451 0.1269 0.1277 0.1079 0.1027 The best window is 30 Results Analysis • In "constant wave" stations such as "101" we can clearly see that both algorithms SNG and Hold are predicting the frequency perfectly. • In "frequency hop" stations such as “201" the SNG and the hold algorithms are practically the same. • When the station nature is less holdish we can see improvement (301). Alternative results • For this section we allow the SNG to accumulate knowledge Alternative results 101 n SNG NW SNG BW Hold 1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 The best window is 10 Alternative results 201 n 1 2 3 4 5 6 7 8 9 10 0.3189 0.1764 0.2860 0.2435 0.3035 0.2247 0.2376 0.2481 0.2251 0.2824 SNG NW 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 SNG BW 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 0.1764 Hold The best window is 20 Results 301 1 2 3 4 5 6 7 8 9 10 n SNG NW SNG BW 0.2826 0.2822 0.2332 0.5565 0.1480 0.1093 0.1128 0.1303 0.1212 0.1313 0.1066 0.1060 0.1172 0.1239 0.1163 0.1093 0.1203 0.1203 0.1290 0.0226 0.0654 0.1139 0.1347 0.1693 0.1581 0.1025 0.0781 0.0589 0.0590 A-SNG BW The best window is 60 0.1149 Alternative results 401 1 2 3 4 5 6 7 8 9 10 n SNG NW 0.1124 0.1213 0.1209 0.1567 0.2644 0.3227 0.2786 0.3787 0.4547 0.3991 0.1011 0.1167 0.1209 0.1272 0.1296 0.1624 0.1522 0.1530 0.1341 0.1238 SNG BW A-SNG BW 0.1105 0.1170 0.1246 0.1345 0.1405 0.1854 0.1720 0.1742 0.1845 0.1921 The best window is 30 Future thoughts • Predict frequency and time Future thoughts • Predict frequency and time - The prediction for the next step and N steps ahead are the same. • Predict a probabilistic spectrum Simple Example – with a conflict Simple Example – with a conflict Any questions ?
© Copyright 2026 Paperzz