Why ENFA?

ENFA Model
ENFA Kick-off Meeting
Hamburg, 10 May 2005
ENFA Model
• Simulates land use decisions in the EU
agricultural and forest sectors
• Represents markets and computes market
equilibrium
• Portrays trade on a global level
• Accounts for environmental impacts of land
use decisions
• Spatially explicit, dynamic
Non-Food
Food
Land use
competition
Biodiversity
ENFA Model Structure
Limits
Limits
Resources
Inputs
Supply
Functions
Land Use
Products
Markets
Processing
Technologies
Demand
Functions,
Trade
Technologies
ENFA Optimization
Model determines the "optimal" use to which
each individual technology should be used
in each region and time period
• Maximize welfare
• Obey restrictions
Product prices are endogenous
ENFA Spatial Resolution
•
•
•
•
•
Political regions (NUTS 2)
Soil types
Farm types
Altitude levels
Slopes
ENFA Dynamics
• 5 to 10 year steps from 2005 to
2030 (2100?)
• Technical progress
• Demand & industry growth
• Resource change
• Policy scenarios
Data
• Resource data
– Climate, Soil, Water, Existing Forests, Population, Labor
• Technological data
– Inputs / outputs for crop, livestock, forest management, and
product processing and transportation options
• Market data
– Observed prices, production, trade, and income levels
– Supply Demand function parameters
• Environmental impact data
– Emissions, Sequestration, Erosion, Biodiversity
ENFA Technologies
• Traditional agriculture
– major crops
– major livestock
•
•
•
•
Forestry
Non-food agriculture
Processing
(Wildlife preservation)
Non-market Impacts
•
•
•
•
•
Greenhouse gas emissions
Air, water, soil quality
Income distribution
Rural development / employment
Wildlife
Simultaneity
• Technologies
• Non-Market Impacts
• Current and Potential Policies
… resource competition
… multiple impacts
Crop Technology Data Base
Region
Altitud
Soil
Farm
Rotation Water
Tillage Fertilz Residue
Item
Unit
Value
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Wheat
dt/ha/y
50
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
S-Beat
dt/ha/y
200
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Straw
dt/ha/y
50
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Labor
hr/ha/y
30
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Land
ha/ha/y
1
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Diesel
l/ha/y
40
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
...
...
...
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Soil-C
kg/ha/y
50
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
Erosion kg/ha/y
15
Poland
0-300
Sand
ES3
W-W-S
Irrig
Conv.
Basic
Basic
NO3-L kg/ha/y
20
Inputs
Outputs
Technology
Adoption
Non-Market Impacts
Consistency
• Representative yields not maximum yields
on experimental plots
• Representative input quantities on labor and
energy intensive inputs
• Representative and complete variable costs
on remaining inputs
• Environmental Impacts (from EPIC)
Technical Details
• Programmed in GAMS
• Non-linear functions are linearly
approximated
• Solved with CPLEX
• Variables and equations are aggregated to
blocks
Constrained Optimization
Max
f (x)
subject to
g(x)  0
Max
 y


p
DD
d

y    r r,y   
 y





    pc   EX j,r,c  d   
j,c 
 r


Objective Function




   p c   IM j,r,c  d   
j,c 
 r






L
L
dL
   p Lr,s   a r,c,t,w

L

a

LIVE

a

dL
d


s r ,s,s r,s,s   
,n,s,u
r,c,t,w ,n,s,u
r,k,i
r,k,i
r,s 
c,t,w
,n,u
k,i




 LB 


LB
LB
   p r   a r,c,t,w ,n,s,u  Lr,c,t,w ,n,s,u   a r,k,i  LIVE r,k,i  d   
r 
k,i

 c,t,w ,n,s,u






W
   p rW   a r,c,t,w

L
d





,n,s,u
r,c,t,w ,n,s,u
r 
c,t,w
,n,s,u








AU
   p AU
a

LIVE
d







r
r,k,i
r,k,i
r 
k,i






 
inp
inp
  pinp    a inp

L

a

LIVE

a

PR

h r,h r ,h  
r,c,t,w ,n,s,u
r,c,t,w ,n,s,u
r,k,i
r,k,i
r,inp 
c,t,w
,n,s,u
k,i

 






 
 
 
US
    p r,r
   USr,r,y  USr,r,y      p IM / EX   EX j,r,c  IM j,r,c   
r 
r
 y
  j,c
 
pCE    EM g  ER g 
g

Resource Limits
 a
ED
r,c,t,w,n,s,u
c,t,w,n,s,u


ED
 L r,c,t,w,n,s,u   a r,k,i
 LIVE r,k,i
k,i

  a ED
r,h  PR r,h

h
Limits exist on
• Land
• Water
• Family labor
• Public grazing land

 b ED
r
Balance Equations


LIVE
a CROP

L

a
 r,k,i,y  LIVEr,k,i
r,c,t,w ,n,s,u,y
r,c,t,w ,n,s,u
t,w ,n,s,u,c
k,i
  a PR
r,c,h  PR r,h  DD r,y
h
 USr,r,y   USr,r,y   IM j,r,y   EX j,r,y  0
r
r
j
j
International Trade
 EX j,r,y   EX j, j,y  FD j,y  0
r
 IM
r
j
j,r,y
  IM j, j,y  FSj,y  0
j
Emission Accounts
EM g 
 e
r,c,t,w,n,s,u,g
 Lr,c,t,w,n,s,u 
r,c,t,w,n,s,u
   e r,f ,g  dL r,s,s 
r,s,s
er ,f ,g  0
   e r,k,i,g  LIVE r,k,i 
r,k,i
   e r,h,g  PR r,h 
r,h
er ,k ,i ,g  0
er ,h ,g  0
er ,c ,t ,w ,n ,s ,u ,g  0
Basic Results
Technology Potentials
Measures of potential
– Technical
– Economic
• single strategy
• multiple strategy
U.S. Ag-Soil Carbon Potentials
500
Carbon price ($/tce)
400
Economic
Potential
300
Competitive
Economic
Potential
200
100
Technical
Potential
0
0
20
40
60
80
100
120
Soil carbon sequestration (mmtce)
140
160
U.S. Afforestation Potentials
500
Carbon price ($/tce)
400
300
Competitive
Economic
Potential
200
Economic
Potential
100
Technical Potential
0
0
50
100
150
200
Emission reduction (mmtce)
250
300
U.S. Biofuel Potentials
500
Economic
Potential
Carbon price ($/tce)
400
300
Competitive
Economic
Potential
200
Technical
Potential
100
0
0
50
100
150
200
250
Emission reduction (mmtce)
300
350
Land Allocation
Pasture
Traditional Crops
Biomass for Power Plants
Afforestation
Carbon Tax
Energy Crop Area
Bioenergy use
None
2010 Limit
2030 Limit
2050 Limit
Unrestricted
Subsidy
A Simple Example
Rainfed Corn Yield (bu/acre)
Irrigated Corn Yield (bu/acre)
Irrigation Emission (tce/acre)
Irrigation Cost ($/acre)
Other Cost ($/acre)
Biofuel Crop Market Revenue ($/acre)
Biofuel Net Carbon Emission Offset (tce/acre)
140
180
0.5
35
220
35
1.7
Constant Corn Price
Rainfed Corn
Irrigated Corn
Biofuel
Revenue in $/Acre
250
200
150
100
50
0
0
25
50
Carbon Price in $/tce
100
Endogenous Corn Price
Rainfed Corn
Irrigated Corn
Biofuel
Revenue in $/Acre
250
200
150
100
50
0
0 (1.80)
25 (1.98)
50 (2.16)
100 (2.88)
Carbon Price in $/tce (Corn price in $/bu)