Ion selectivity of a biological channel at high concentration ratio: insights on small ion diffusion and binding M. Lidón López, Marcel Aguilella-Arzo, Vicente Aguilella and Antonio Alcaraz University “Jaume I” Spain Outline • Introduction: – Ion selectity – OmpF porin – Previous results in OmpF selectivity • Reversal potential results • Modelling • Conclusions Ionic selectivity •Selectivity in ionic channels: Partitioning: equilibrium, measures ionic exclusion. Diffusion: non equilibrium, measures relative mobility of different ions. OmpF porin Outer membrane protein F in E. Coli Reconstituted into planar lipid membranes OmpF porin forms trimeric channels Each monomer has hourglass-like shape, and it is slightly cation selective at neutral pH Ionic selectivity in OmpF I -60 The selectivity pH -40 Erev(mV) is not a number but depends on: Cation selective -20 0 Cis = 1M/ Trans = 0.1M 20 40 Anion selective 60 0 2 4 6 pH 8 10 12 A. Alcaraz, E.M. Nestorovich, M. Aguilella-Arzo, V.M. Aguilella and S. M. Bezrukov, Biophys. J. 87 (2004) 943. Ionic selectivity in OmpF II The selectivity is not a number but depends on: Salt concentration and concentration gradient A. Alcaraz, E.M. Nestorovich, M. Aguilella-Arzo, V.M. Aguilella and S. M. Bezrukov, Biophys. J. 87 (2004) 943. Ionic selectivity in OmpF III 40 The selectivity Type of electrolyte anion selective 20 RP (mV) is not a number but depends on: 30 MgCl2 CaCl2 10 C trans = 0.1 M 0 -10 cation selective NaCl -20 -30 KCl -40 5 10 15 20 Ccis/Ctrans A. Alcaraz, E. M. Nestorovich, M. L. López , E. García-Guiménez, S. M. Bezrukov and V. M. Aguilella, Biophys. J. 96 (2009) 56. Measuring reversal potentials I Through Ion channel reconstitution in planar lipid bilayers Ag/AgCl with salt bridges, 2M KCl Trans: 0.03 M I Cis: 0.09 M – 6M pH = 6 Electrolytes: LiCl, NaCl, KCl, CsCl Reversal Potential Model I Selectivity in channels: Partitioning: equilibrium, measures ionic exclusion Diffusion: non equilibrium, measures relative ionic mobility RP = 2 Donnan + diffusion Cis solution Ion channel ∆φexclusioncis Trans solution RP ∆φDiffusion ∆φExclusion-trans Reversal Potential Model II RP = 2 Donnan + diffusion Exclusion potential: Donnan Potential ∆φexclusion = ∆φDonnan cis − ∆φDonnan trans 2 k BT ( − X / 2c trans ) + ( − X / 2c trans ) + 1 = ln e ( − X / 2ccis ) + ( − X / 2ccis )2 + 1 Diffusion potential: Electroneutrality Approximation ∆φDiffusion k BT D− − D+ D+ ccis + D− ( ccis − X ) = ln e D− + D+ D+ ctrans + D− ( ctrans − X ) Reversal Potential (mV) Exclusion and diffusion 20 Diffusion goes with ln r at high r Slope information D+/D- Diffusion D+ < D− Diffusion D+ = D− 0 -20 Diffusion D+ > D− -40 ∆φDiffusion D+ 1 − k T D− ln r ≈A+ B e 1 + D+ D− Exclusion -60 Exclusion saturates at high r 1 10 Concentration Ratio (cis/trans) 100 • Why high concentration gradients? – At high concentration exclusion is saturated – We can separate different contributions LiCl and NaCl RP results I Reversal Potential (mV) Cationic selectivity ⇒ Anionic selectivity 0 LiCl -10 -20 -30 NaCl -40 1 10 100 Concentration Ratio (cis/trans) M.L. López , M. Aguilella-Arzo, V. Aguilella and A. Alcaraz, J. Phys. Chem. B 113 (2009) 8745. Diffusion D+ < D− 20 Diffusion D+ = D− 0 -20 Diffusion D+ > D− -40 Exclusion -60 1 10 Concentration Ratio (cis/trans) 100 Reversal Potential (mV) Reversal Potential (mV) LiCl and NaCl RP results II 0 LiCl -10 -20 -30 NaCl -40 1 10 100 Concentration Ratio (cis/trans) LiCl and NaCl D+ < D- Exclusion + diffusion can explain the results but…….. slopes 50% higher aprox. CsCl and KCl RP results D(cm2/s) 10-5 1.03 ion Li+ 1.33 Na+ 1.96 K+ 2.06 Cs+ 2.03 Cl- Diffusion D+ < D− 20 Diffusion D+ = D− 0 -20 CsCl Diffusion D+ > D− -40 Exclusion Reversal Potential (mV) Reversal Potential (mV) -10 CsCl -20 -30 KCl -40 -60 1 10 100 Concentration Ratio (cis/trans) Exclusion + diffusion cannot explain the results There is another phenomenon involved 1 10 100 Concentration Ratio (cis/trans) M.L. López , M. Aguilella-Arzo, V. Aguilella and A. Alcaraz, J. Phys. Chem. B 113 (2009) 8745. Binding could influence selectivity?? Cation binding in OmpF I Fluorescence exp, Dissociation constant 3 mM •Y. Kobayashi and T. Nakae, Eur. J. Biochem. 151(1985) 231. • A. Suenaga, Y. Komeiji, M. Uebayasi,T. Meguro, M. Saito and I. Yamato, Biosci. Rep. 18 (1998) 39. MD: Asp113 •C. Danelon, A. Suenaga, M. Winterhalter and I. Yamato, Biophys. Chem. 104 (2003) 591. Free energy calculations •E. M. Nestorovich, T. K. Rostovtseva and S. M. Bezrukov, Biophys. J. 85 (2003) 3718. Noise: Glu117 Push- out mechanism slows down cation diffusion Cation binding in OmpF II MD : 10 nS Asp113 Glu117 Binding: Glu117, Asp113 Push- out mechanism slows down cation diffusion RP Results at high gradients Linear behaviour with Ln r ⇒ diffusional behaviour Electrolyte ( D+ D− ) eff ( D+ D− )bulk CsCl KCl NaCl LiCl 0.48 ± 0.06 0.50 ± 0.08 0.58 ± 0.01 0.56 ± 0.05 Diffusion is reduced in a common pattern (50%) ⇓ Binding slows down cation Molecular model for binding I Aim of the model: obtain fraction of unbound acid, x Binding to two specific acids : Glu117, Asp113 Statistical mechanics: Hill 1956 Binding of antibiotic to OmpF S. Mafé, P. Ramírez, and A. Alcaraz, J. Chem. Phys. 119 (2003) 8097. H+ H+ H+ H+ K+ Possible states in gran cannonical ensemble of the two acids K+ K+ K+ H+ K+ K+ H+ Molecular model for binding II H+ K+ H+ K+ K+ H+ H+ H+ K+ K+ K+ H+ q grand partition function , zi partition f. ion i, λi related activity ion i q = exp ( − u k BT ) + 2 z H λH + 2 z K λK + 2 z H λH z K λK + z H 2 λH 2 + z K 2λK 2 = ( ) ( ) ( ) = exp ( − u k BT ) + 2 10 pK a − pH + 2 10 pKc c + 2 10 pK a − pH10 pKc c + 102( pKa − pH ) + (10 pKc c) 2 x, fraction non bound acid ∂ ln q 1 1− x = λK 2 ∂λ K Modelling the reversal potential I Modelling reduced diffusion If we assume at high c, x =0, Deff = x D free + (1 − x ) Dbound (Deff ) high concentration = Dbound + (Deff ) high concentration = Dbulk / 2 Dbound = Dbulk / 2 Modelling the reversal potential II RP Exclusion Fixed charge concentration= 0.3 M Diffusion Binding Fluorescence exp. Dissociation constant = 3mM (pKc= 2.5) Dissociation constant = 0.3 M (pKc = 0.5) 0 Reversal Potential (mV) M. Aguilella-Arzo, J. J. García-Celma, J. Cervera, A. Alcaraz and V. M. Aguilella, Bioelectrochemistry 77 (2007) 320. -10 -20 D+ = 0.5 D+ bulk -30 pK c → +∞ -40 pK c = 0.5 -50 D+ = D+ bulk pK c → −∞ -60 -70 1 10 Concentration Ratio (cis/trans) 100 Theory versus experiments Reversal Potential (mV) RP = 2 Donnan + diffusion 0 -10 -20 -30 -40 a LiCl NaCl 0 -10 -20 -30 -40 b 1 CsCl KCl 10 100 Concentration Ratio (cis/trans) Conclusions • RP measurements at large concentration ⇒ useful information. • At high concentration ratios diffusion is hampered. • The reduction of the cation diffusion is the same for all the electrolytes and is consistent with a cation binding site. • The theoretical model explains qualitatively RP results. Acknowledgments – Thanks to…. Department of Physics, Biophysics Unit UNIVERSITY JAUME I, CASTELLON • Vicente Aguilella •Antonio Alcaraz •Marcel Aguilella-Arzo • Elena García-Giménez • Andreu Andrio
© Copyright 2026 Paperzz