Research in Applied Mathematics vol. 1 (2017), Article ID 101263, 16 pages doi:10.11131/2017/101263 AgiAl Publishing House http://www.agialpress.com/ Research Article Mathematical Analysis of Visceral Leishmaniasis Model F. Boukhalfa, M. Helal, and A. Lakmeche Laboratory of Biomathematics, Department of Mathematics, Univ. Sidi-Bel-Abbes, P.B. 89, SidiBel-Abbes, 22000, Algeria Abstract. In this work, we consider a mathematical model describing the dynamics of visceral leishmaniasis in a population of dogs π·. First, we consider the case of constant total population π·, this is the case where birth and death rates are equal, in this case transcritical bifurcation occurs when the basic reproduction number β0 is equal to one, and global stability is shown by the mean of suitable Lyapunov functions. After that, we consider the case where the birth and death rates are diο¬erent, if the birth rate is great than death rate the total dog population increases exponentially, while the infectious dogs πΌ dies out if the basic reproduction number is less than one, if it is great than one then π· goes to inο¬nity. We also prove that the total population π· will extinct for birth rate less than death rate. Finally we give numerical simulations. Keywords: Visceral leishmaniasis model, Bifurcation, Global stability, Lyapunov functions, asymptotic properties. Corresponding Author M. Helal [email protected] Editor Paul Bracken Dates Received 13 November 2016 Accepted 9 February 2017 Copyright © 2017 F. Boukhalfa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Mathematics Subject Classiο¬cation. Primary: 34C60. Secondary: 34C23, 34D05, 37B28, 37L10. 1. Introduction In this paper, we investigate a mathematical model of zoonotic visceral leishmaniasis (ZVL), the model studied here is inspired from [1, 4, 5]. Zoonotic visceral leishmaniasis (ZVL) caused by Leishmania infantum is a disease of humans and domestic dogs (the reservoir) transmitted by phlebotomize sandο¬ies. According to the World Health Organization, leishmaniasis is one of the diseases aο¬ecting the poorest in developing countries, 350 million people are considered at risk of contracting leishmaniasis (see [11]). Many works have considered mathematical models for ZVL, we can cite [1, 4β10], where behavior of infection, and stability of free disease and endemic equilibria are studied. Following [1, 4], at time π‘ let the dog population of size π·(π‘), it is divided into two categories, ever-infectious dogs (that become infectious) and never-infected dogs. Ever-infectious dogs category is partitioned into three subclasses who are susceptible (uninfected), latent (infected but not infectious) and infectious dogs, with sizes (numbers) denoted by π(π‘), πΏ(π‘) and πΌ(π‘) respectively. Never-infected dogs category is partitioned into two subclasses who are uninfected and infected dogs, with sizes denoted by π (π‘) and π(π‘) respectively (Figure 1). The sum π(π‘) + πΏ(π‘) + πΌ(π‘) + π (π‘) + π(π‘) is the total population π·(π‘). The natural death rate πΏ is assumed to be identical in all subclasses. A proportion πΌ of the dogs born susceptible to ZVL with 0 < πΌ < 1. Consequently, the birth ο¬ux into the susceptible class is πΌπ½π·(π‘) and into the resistant class is (1 β πΌ)π½π·(π‘) where π½ is the natural birth rate of dogs. The latent dogs become infectious and re-enter into infected class with rate π. The force of infection is How to cite this article: F. Boukhalfa, M. Helal, and A. Lakmeche, βMathematical Analysis of Visceral Leishmaniasis Model,β Research in Applied Mathematics, vol. 1, Article ID 101263, 16 pages, 2017. doi:10.11131/2017/101263 Page 1 Research in Applied Mathematics Figure 1: Compartmental model. πΆπΌ(π‘)/π·(π‘), where πΆ is the vectorial capacity of the sandο¬y population transmitting infection between dogs. It is denoted by πΆπΌ(π‘)π(π‘)/π·(π‘) (resp. πΆπΌ(π‘)π (π‘)/π·(π‘)) for the contact between infectious and susceptible (resp. infectious and uninfected) dogs. Based on the above assumptions, we obtain the epidemic model governed by the following system of ordinary diο¬erential equations (see [1, 4]) β§ βͺ βͺ βͺ βͺ βͺ βͺ βͺ β¨ βͺ βͺ βͺ βͺ βͺ βͺ βͺ β© πΆπΌπ ππ = πΌπ½π· β β πΏπ, ππ‘ π· πΆπΌπ ππΏ = β (π + πΏ) πΏ, ππ‘ π· ππΌ = ππΏ β πΏπΌ, ππ‘ (1) πΆπΌπ ππ = (1 β πΌ) π½π· β β πΏπ , ππ‘ π· ππ πΆπΌπ = β πΏπ ππ‘ π· with initial conditions π(0) β₯ 0, πΏ(0) β₯ 0, πΌ(0) β₯ 0, π (0) β₯ 0 and π(0) β₯ 0. (2) From system (1), it follows that the total dog population π·(π‘) = π(π‘) + πΏ(π‘) + πΌ(π‘) + π (π‘) + π(π‘) can be determined from the diο¬erential equation ππ· = (π½ β πΏ)π· which gives π·(π‘) = π·0 π(π½βπΏ)π‘ , ππ‘ where π·0 = π·(0). Therefore β§ 0 if π½ < πΏ, βͺ lim π·(π‘) = β¨ π·0 if π½ = πΏ, π‘ββ βͺ β if π½ > πΏ. β© In [1], the case of constant total population is considered (i.e. π½ = πΏ), where well-posedness of (1), (2) is proved and local stability of equilibria is investigated. In fact, the disease free equilibrium πΈπ = (π 0 , πΏ0 , πΌ 0 , π 0 , π0 ) = (πΌπ·, 0, 0, (1 β πΌ)π·, 0) is locally asymptotically stable πΆπΌπ < 1, and unstable for β0 (πΏ) > 1. For β0 (πΏ) > 1, the endemic equilibrium for β0 (πΏ) = πΏ(π+πΏ) doi:10.11131/2017/101263 Page 2 Research in Applied Mathematics πΈ β = (π β , πΏβ , πΌ β , π β , πβ ) = ( βπΌπ·(πΏ) , 0 is locally asymptotically stable. πΏ 2 π·(β0 (πΏ)β1) πΏπ·(β0 (πΏ)β1) (1βπΌ)π· (1βπΌ)π·(β0 (πΏ)β1) , , β (πΏ) , ) ππΆ πΆ β0 (πΏ) 0 exists and In this paper, we study the global stability of equilibria of (1) by constructing a suitable Lyapunov functions and using LaSalleβs invariance principle when πΏ = π½. A critical case β0 (πΏ) = 1 is also investigated. After that, we consider the case where π½ β πΏ. Numerical simulations are given in section four to illustrate our results. We end our work by some conclusions. 2. Constant Total Population (Case πΏ = π½) The results of Boukhalfa et al. [1] are given in Theorems 2.1 and 2.2. Theorem 2.1 (see [1]). Assume that π½ = πΏ. System (1) has the following equilibria: β’ The disease free equilibrium πΈπ = (π 0 , πΏ0 , πΌ 0 , π 0 , π0 ) = (πΌπ·, 0, 0, (1 β πΌ)π·, 0) which exists always. β’ If β0 (πΏ) > 1, the system (1) admits a unique positive equilibrium πΈ β = (π β , πΏβ , πΌ β , πΌπ· π β , π β ) = ( β , 0 rium. πΏ 2 π·(β0 β1) πΏπ·(β0 β1) (1βπΌ)π· (1βπΌ)π·(β0 β1) , , β , ) ππΆ πΆ β0 0 namely the endemic equilib- Theorem 2.2 (see [1]). Let π½ = πΏ. β’ If β0 (πΏ) < 1, then the disease free equilibrium (DFE) πΈπ of (1) is locally asymptotically stable. If β0 (πΏ) > 1, πΈπ is unstable. β’ If β0 (πΏ) > 1, the endemic equilibrium πΈ β of (1) is locally asymptotically stable. The ο¬rst four equations of (1) are independent of π, therefore the last equation of (1) can be omitted without loss of generality. Hence, system (1) is reduced to β§ βͺ βͺ βͺ βͺ βͺ β¨ βͺ βͺ βͺ βͺ βͺ β© πΆπΌπ ππ = πΌπ½π· β β πΏπ, ππ‘ π· ππΏ πΆπΌπ = β (π + πΏ) πΏ, ππ‘ π· (3) ππΌ = ππΏ β πΏπΌ, ππ‘ ππ πΆπΌπ = (1 β πΌ) π½π· β β πΏπ ππ‘ π· with initial conditions π(0) β₯ 0, πΏ(0) β₯ 0, πΌ(0) β₯ 0, π (0) β₯ 0 (4) and π·(π‘) = π·0 π(π½βπΏ)π‘ . The considered region for (3) is Μ Ξπ· βΆ= {(π, πΏ, πΌ, π ) β β4+ \π + πΏ + πΌ + π β€ π·}. which is positively invariant since all solutions of (3) in Μ Ξπ· remain there for all π‘ β₯ 0. 0 β 0 β β β β Μ Μ Let πΈπ = (π , 0, 0, π ) and πΈ = (π , πΏ , πΌ , π ) be the equilibria of (3). doi:10.11131/2017/101263 Page 3 Research in Applied Mathematics 2.1. Bifurcation analysis The case β0 (πΏ) = 1 corresponding to πΆ = πΆ1 = πΏ(π+πΏ) . πΌπ To prove bifurcation for β0 (πΏ) = 1, we use center manifold method described in CastilloChavez and Song [2]. To this aim, let π₯ = (π₯1 , π₯2 , π₯3 , π₯4 ) such that π₯1 = π, π₯2 = πΏ, π₯3 = πΌ, π₯4 = π . From (3) we obtain β§ βͺ βͺ βͺ βͺ βͺ β¨ βͺ βͺ βͺ βͺ βͺ β© πΆπ₯3 π₯1 ππ₯1 = πΌπ½π· β β π½π₯1 = π1 (π₯, πΆ), ππ‘ π· πΆπ₯3 π₯1 ππ₯2 = β (π + π½) π₯2 = π2 (π₯, πΆ), ππ‘ π· (5) ππ₯3 = ππ₯2 β π½π₯3 = π3 (π₯, πΆ), ππ‘ πΆπ₯3 π₯4 ππ₯4 = (1 β πΌ) π½π· β β π½π₯4 = π4 (π₯, πΆ). ππ‘ π· The linearization matrix of system (3) around the disease-free equilibrium for πΆ = πΆ1 is 0 βπΆ1 πΌ β βπΏ β β πΆ1 πΌ β 0 β (π + πΏ) π΄=β β π βπΏ β 0 β β 0 β(1 β πΌ)πΆ1 β 0 0 β β β 0 β β. β 0 β β β βπΏ β The eigenvalues of π΄ are π1 = βπΏ with multiplicity two, π2 = 0 and π3 = βπ β 2πΏ. Zero is a simple eigenvalue of π΄ and the other eigenvalues have negative real parts. A right eigenvector π = (π€1 , π€2 , π€3 , π€4 )π such that π΄π = π2 π (corresponding to the zero πΆ π , 1, ππΏ , β(1 β πΌ) πΏ12 )π and the left eigenvector π = (π£1 , π£2 , π£3 , π£4 ) such eigenvalue) is π = (β π+πΏ πΏ πΏ πΏ(π+πΏ) that ππ΄ = π2 π and π.π = 1 is π = (0, π+2πΏ , π(π+2πΏ) , 0). Let 4 π 2 ππ π= π£ π€π€ (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) β π π π ππ₯π ππ₯π π,π,π=1 and 4 π= β π,π=1 doi:10.11131/2017/101263 π£π π€π π 2 ππ (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ). ππ₯π ππΆ Page 4 Research in Applied Mathematics The second partial derivatives of π2 and π3 are given by 2 π 2 π2 π 2 π2 π 2 π2 πΆ π π2 = , = = = 0, ππ₯1 ππ₯3 π· ππ₯21 ππ₯1 ππ₯2 ππ₯1 ππ₯4 π₯ π 2 π2 π 2 π2 π 2 π2 π 2 π2 π 2 π2 = = 3, = = = 0, ππ₯1 ππΆ π· ππ₯22 ππ₯1 ππ₯2 ππ₯2 ππ₯3 ππ₯2 ππ₯4 π 2 π2 π 2 π2 π 2 π2 π₯1 π 2 π2 = = 0, = , = ππ₯3 ππ₯3 ππ₯3 ππ₯4 ππ₯3 ππΆ π· ππ₯23 π 2 π2 π 2 π2 π 2 π2 π 2 π2 = = = = 0, ππ₯4 ππ₯1 ππ₯4 ππ₯2 ππ₯4 ππ₯3 ππ₯24 π 2 π3 = 0, 1 β€ π, π β€ 4. ππ₯π ππ₯π It follows that 4 π = π£2 β π€π π€π π,π=1 π 2 π2 (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) ππ₯π ππ₯π π 2 π3 π€π π€π (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) ππ₯π ππ₯π π 2 π2 = 2π£2 π€1 π€3 (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) ππ₯1 ππ₯3 π(π + πΏ) < 0, = β2 πΏ(π + 2πΏ) +π£3 β4π,π=1 and 4 π 2 π2 π€ π = π£2 (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) β π ππ₯π ππΆ π=1 π 2 π3 4 +π£3 βπ=1 π€π (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) ππ₯π ππΆ 2 π π2 = π£2 π€3 (πΌπ·, 0, 0, (1 β πΌ)π·, πΆ1 ) ππ₯ ππΆ πΌπ 3 = > 0. 2πΏ + π Thus π < 0 and π > 0, from result of Theorem 4.1 in Castillo-Chavez and Song [2] we deduce the following theorem. Theorem 2.3. A transcritical bifurcation occurs at β0 (πΏ) = 1. When πΆ crosses πΆ1 , a disease free equilibrium Μ πΈπ changes its stability from stable to unstable. Correspondingly, a negative unstable equilibrium Μ πΈ β for πΆ < πΆ1 , becomes positive and locally asymptotically stable for πΆ > πΆ1 (Figure 2). doi:10.11131/2017/101263 Page 5 Research in Applied Mathematics Figure 2: Bifurcation diagram for (3). 2.2. Global stability In this subsection we investigate the global asymptotic stability of disease free equilibrium πΈπ and endemic equilibrium πΈ β . We state the following theorem. Theorem 2.4. β’ If π 0 (πΏ) β€ 1, then Μ πΈπ is globally asymptotically stable in Μ Ξπ· . β’ If π 0 (πΏ) > 1, then Μ πΈ β is globally asymptotically stable in Μ Ξπ· \Μ Ξπ· where Μ Ξπ· = {(π, 0, 4 0, π ) β β+ \0 β€ π + π β€ π·}. Proof. To study the global stability, we reduce system (3) as follow β§ βͺ βͺ βͺ β¨ βͺ βͺ βͺ β© πΆπΌπ ππ = πΌπΏπ· β β πΏπ, ππ‘ π· πΆπΌπ ππΏ = β (π + πΏ)πΏ, ππ‘ π· (6) ππΌ = ππΏ β πΏπΌ. ππ‘ Since π, πΏ and πΌ are independent of π , we study the system (6) in the closed set Μ Ξ©π· = {(π, πΏ, πΌ) β β3+ \0 β€ π + πΏ + πΌ β€ π·}. β’ By means of a Lyapunov function we show that the disease free equilibrium Μ πΈπ is globally asymptotically stable. doi:10.11131/2017/101263 Page 6 Research in Applied Mathematics We set π1 (π, πΏ, πΌ) = 1 1 π+πΏ (π β π 0 )2 + πΏ + πΌ + (π β π 0 + πΏ + πΌ)2 . 0 π 2 2π π1 (π, πΏ, πΌ) β₯ 0 and π1 (π, πΏ, πΌ) = 0 if and only if π = π 0 and πΏ = πΌ = 0. Computing the time derivative of π1 , we ο¬nd ππ1 1 ππ ππΏ π + πΏ ππΌ ππ ππΏ ππΌ = 0 (π β π 0 ) + + + (π β π 0 + πΏ + πΌ) ( + + ππ‘ ππ‘ ππ‘ π ππ‘ ππ‘ ππ‘ ππ‘ ) π = 1 πΆπΌπ πΆπΌπ (π β π 0 ) (πΌπΏπ· β β πΏπ ) + β (π + πΏ) πΏ 0 π· π· π + = π+πΏ (ππΏ β π½πΌ) + (π β π 0 + πΏ + πΌ) (πΌπΏπ· β πΏπ β πΏπΏ β πΏπΌ) π πΆπΌπ πΆπΌπ π β π0 β β πΏ(π β π 0 )) + β (π + πΏ) πΏ ( 0 ( π ) π· π· + = β π+πΏ (ππΏ β πΏπΌ) β πΏ(π β π 0 + πΏ + πΌ)2 π π2 πΆ π+πΏ πΏ πΆ 0 2 (π βπ ) + 2π β βπ 0 πΌ + (π 0 βπΏ πΌ βπΏ(π βπ 0 +πΏ+πΌ)2 . 0 0 ( ) π· π· π ) π π We can show that the coeο¬cients of the term πΌ in the last equality are negative. In fact, πΆπΌ(β (πΏ)β1) πΆππΌ πΆ since π 0 = πΌπ· and β0 (πΏ) = πΏ(πΏ+π) , we have π 0 π· β πΏ π+πΏ = β0 (πΏ) , which is negative π for π 0 (πΏ) β€ 1. Further, we have 2π β π2 π0 0 0 β π β€ 0 for π β₯ 0. ππ Thus, for π 0 (πΏ) β€ 1 we have ππ‘1 (π, πΌ, πΏ) β€ 0 for all (π, πΏ, πΌ) β Μ Ξ©π· . And 0 only if (π, πΏ, πΌ) = (π , 0, 0) holds. ππ1 ππ‘ = 0 if and Thus, the only invariant set contained in Μ Ξ©π· is {Μ πΈπ }. Hence, LaSalleβs theorem implies 0 convergence of the solutions (π, πΏ, πΌ) to (π , 0, 0) if initial values are in Μ Ξ©π· . Further, we have lim πΌ(π‘) = 0 β βπ > 0, βπ΄π > 0 such that for π‘ > π΄π we have |πΌ(π‘)| < π. π‘β+β Let π > 0, from equation four of system (3) we have β(π doi:10.11131/2017/101263 πΆ π πΆ + πΏ)π + (1 β πΌ)πΏπ· β€ π (π‘) β€ β(βπ + πΏ)π + (1 β πΌ)πΏπ·. π· ππ‘ π· Page 7 Research in Applied Mathematics After integrating between π΄π and π‘ we obtain (1 β πΌ)πΏπ· (1 β πΌ)πΏπ· β€ lim π (π‘) β€ π‘ββ πΆ πΆ π +πΏ βπ + πΏ π· π· π· πΏ. Thus lim π (π‘) = (1 β πΌ)π· = π 0 . π‘ββ πΆ Therefore, for β0 (πΏ) β€ 1 the disease free equilibrium Μ πΈπ is globally asymptotically Μ stable in Ξπ· . for all π such that 0 < π < β’ Let π2 (π, πΏ, πΌ) = πΏπ· π πΏπ· πΏ πΌ (π β π β β π β ln β ) + (πΏ β πΏβ β πΏβ ln β ) + (πΌ β πΌ β β πΌ β ln β ) πΏ πΌ πΆπ β π πΆπ β for (π, πΏ, πΌ) β Μ Ξπ· \Μ Ξπ· . Then, we have ππ2 πΏπ· πΏπ· πΌ β ππΌ π β ππ πΏβ ππΏ = ) + ) + (1 β ) β (1 β β (1 β ππ‘ π ππ‘ πΏ ππ‘ πΌ ππ‘ πΆπ πΆπ = πΏ πΆπ β πΆ π β πβ πΏπ· β 2 β β β (β (π β π ) β (πΌ β πΌ )(π β π ) β (π β π )πΌ ) π·π π· π πΆπ β π + πΏπ· πΆπΌπ πΏβ πΆπΌπ ( β (π + πΏ)πΏ β + πΏβ (π + πΏ)) πΏ π· πΆπ β π· +(ππΏ β πΏπΌ β = πΏπ· πΆπ β2 πΌ πΆπ β2 πΌ β πΆ πΆ πΌ πΆ πΏ β 2 (π β π ) + β β πΌπ β π β2 + 2 π β πΌ) (β β π π· π π·π π· π· π π· πΆπ + πΏπ· πΆ πΆπΏβ πΌπ + πΏβ (π + πΏ)) β ( πΌπ β (π + πΏ)πΏ β π· πΏ πΆπ π· +ππΏ β πΏπΌ β = β + = β β πΌβ ππΏ + πΌ β πΏ πΌ πΏπ· πΏ πΏπ β πΌ β πΏ β 2 β (π β π ) + πΏπΌ β β β πΌπ + πΏπΌ β π πΆπ π π πΏ πΏπ· πΏπΏβ πΌπ πΏπ· β + πΏ (π + πΏ) β πΌπ β β (π + πΏ)πΏ β π πΆπ πβ πΏ πΆπ β +ππΏ β πΏπΌ β doi:10.11131/2017/101263 πΌβ ππΏ + πΌ β πΏ) πΌ πΌβ ππΏ + πΌ β πΏ πΌ πΏπ· πΏ πΏπ β πΌ β πΏπ· β 2 β (π + πΏ)) πΏ (π β π ) + 2πΏπΌ β + (π β β π πΆπ π πΆπ β πΏπΏβ πΌπ πΏπ· β πΌβ + πΏ (π + πΏ) β ππΏ. πΌ πβ πΏ πΆπ β Page 8 Research in Applied Mathematics Since π β = π·πΏ(π + πΏ) πΏ and πΏβ = πΌ β , we have πΆπ π ππ2 π πΏ πΏπ β πΌ β πΏπΏβ πΌπ πΌ β = β (π β π β )2 + 3πΏπΌ β β β β β ππΏ ππ‘ π+πΏπ π πΌ π πΏ = β π πΏ π πΏπΌ πβ π πΏ (π β π β )2 β πΏπΌ β ( β + + β 3) π+πΏπ π πΏπΌ π ππΏ which is negative if ( ππβ ππΏ πΏπΌ + Set π’ = πβ π and π£ = ππΏ πΏ πΌ πβ π + ππΏ πΏ πΌ β 3) is positive. and consider the function β(π’, π£) = π’ + π£ + Computing the ο¬rst derivatives of β, we have Moreover πβ(1,1) ππ’ = 0 and derivatives of β, we have πβ(1,1) ππ£ π 2 β(π’,π£) ππ’ππ£ 1 β 3. π£π’ πβ(π’,π£) ππ’ = 1β 1 π’2 π£ and πβ(π’,π£) ππ£ = 1β 1 . π’π£2 = 0, thus (1, 1) is a critical point of β. For the second = 2 1 , π β(π’,π£) π’2 π£ 2 ππ’2 = 2 π£π’3 and π 2 β(π’,π£) ππ£2 = 2 . π’π£3 We obtain 2 π»ππ π (β)(1, 1) = π 2 β(1, 1) π 2 β(1, 1) π 2 β(1, 1) = 3. β ( ππ’ππ£ ) ππ’2 ππ£2 We have π»ππ π (β)(1, 1) < 0 and point (π’, π£) = (1, 1). π 2 β(1,1) ππ’2 > 0, therefore the function β has a minimum Moreover, β(1, 1) = 0 and β β₯ 0 which imply that ( ππβ ππΏ πΏπΌ + Thus π π (π, πΏ, πΌ) ππ‘ 2 πβ π + ππΏ πΏ πΌ β 3) is positive. β€ 0. π The function π2 is a Lyapunov function for system (6), and ππ‘ π2 (π, πΏ, πΌ) = 0 if and only β if π = π and ππΏ = πΏπΌ. Looking at the ο¬rst equation in system (6) for π = π β we obtain πΌ = πΌ β. Hence πΏ = πΏβ and the equilibrium (π β , πΏβ , πΌ β ) is the only point satisfying = 0. π π (π, πΏ, πΌ) ππ‘ 2 Thus the only invariant set contained in Μ Ξ©π· is {Μ πΈ β }, hence LaSalleβs theorem implies β β β convergence of the solutions (π, πΏ, πΌ) to (π , πΏ , πΌ ) for all initial values in Μ Ξ©π· \Μ Ξ£π· where Μ Ξ£π· βΆ= {(π, 0, 0) β β3+ \0 β€ π β€ π·}. Moreover, using the procedure above, we can show that lim π (π‘) = π β . Therefore, for π‘ββ β0 (πΏ) > 1 the endemic equilibrium Μ πΈ β is globally asymptotically stable in Μ Ξπ· \Μ Ξπ· . doi:10.11131/2017/101263 Page 9 Research in Applied Mathematics Remark 2.1. If β0 (πΏ) > 1 and the initial conditions (π(0), πΏ(0), πΌ(0), π (0)) β Μ Ξπ· with (π(0), πΏ(0), πΌ(0)) β Μ Ξ£π· , then the solution of (3) converges to the disease free equilibrium Μ πΈπ . Corollary 2.1. β’ If π 0 (πΏ) β€ 1, then πΈπ is globally asymptotically stable in Ξπ· βΆ= {(π, πΏ, πΌ, π , π) β β5 \π + πΏ + πΌ + π + π = π·}. β’ If π 0 (πΏ) > 1, then πΈ β is globally asymptotically stable in Ξπ· \Ξπ· where Ξπ· βΆ= {(π, 0, 0, π , π) β β5+ \0 β€ π + π + π β€ π·}. In addition, if the initial conditions (π(0), πΏ(0), πΌ(0), π (0)) β Ξπ· then the solution of (1) converges to the disease free equilibrium πΈπ . 3. Non Constant Total Population (Case πΏ β π½) Let us introduce new non-dimensional variables π πΏ πΌ π π and π = . π = , π= , π= , π= π· π· π· π· π· We obtain the system β² β§ π = πΌπ½ β πΆππ β π½π , βͺ βͺ β² βͺ π = πΆππ β (π + π½)π, βͺ βͺ β² β¨ π = ππ β π½π, βͺ βͺ β² βͺ π = (1 β πΌ) π½ β πΆππ β π½π, βͺ βͺ β² β© π = πΆππ β π½π (7) π (0) β₯ 0, π(0) β₯ 0, π(0) β₯ 0, π(0) β₯ 0, π(0) β₯ 0. (8) with initial conditions From the homogeneity of (1), note that the total population size π· does not appear in (7). Also observe that the ο¬rst four equations in (7) do not depend on π and π + π + π + π + π = 1. Therefore the last equation can be omitted without loss of generality. Hence, system (7) can be reduced to β² β§ π = πΌπ½ β πΆππ β π½π , βͺ βͺ βͺ πβ² = πΆππ β (π + π½)π, βͺ β¨ βͺ πβ² = ππ β π½π, βͺ βͺ βͺ πβ² = (1 β πΌ) π½ β πΆππ β π½π. β© (9) We study (9) in the closed set Μ Ξ1 = {(π , π, π, π) β β4+ \0 β€ π + π + π + π β€ 1}. doi:10.11131/2017/101263 Page 10 Research in Applied Mathematics Figure 3: Bifurcation diagram for system (1). In left ο¬gure, the initial conditions (π(0), πΏ(0), πΌ(0), π (0), π(0)) β β 2 Ξπ·0 \Ξπ·0 , whenever π½ > πΏ and π½ > π½1 = βπ+ π2 +4πΆππΌ the disease dies out while the total population increases exponentially. Although the disease spreads (that is, the number of infected grows in total number) when π½1 < π½. In right ο¬gure, the initial conditions (π(0), πΏ(0), πΌ(0), π (0), π(0)) β Ξπ·0 . Then, whenever π½ > πΏ the disease dies out while the total population increases exponentially. Note that when π½ < πΏ, the total population decreases exponentially. The set Μ Ξ1 is positively invariant with respect to (9). Note that (9) is equivalent to (3) for π· = 1 and πΏ = π½. The basic reproduction number is given by β0 (π½) = πΆπΌπ . π½(π + π½) From Theorem 2.4 and Remark 2.1 we deduce the following results. Theorem 3.1. (i) If β0 (π½) β€ 1, then ππ = (π 0 , π0 , π0 , π0 ) = (πΌ, 0, 0, 1 β πΌ) is the only equilibrium of (9), namely disease free equilibrium, it is globally asymptotically stable in Μ Ξ1 . (ii) If β0 (π½) > 1, then ππ is unstable and there exists a unique endemic equilibrium πβ = (π β , πβ , πβ , πβ ) = ( βπΌ , 0 cally stable in Μ Ξ1 \Μ Ξ1 . π½ 2 (β0 β1) π½(β0 β1) (1βπΌ) (1βπΌ)(β0 β1) , πΆ , β , ) ππΆ β0 0 of (9), it is globally asymptoti- (iii) If β0 (π½) > 1, then for all initial conditions (π (0), π(0), π(0), π(0)) β Μ Ξ1 the solution of (9) converges to the disease free equilibrium ππ . From Theorem 3.1 we deduce the following results. Corollary 3.1. If π½ < πΏ, then lim π(π‘) = lim πΏ(π‘) = lim πΌ(π‘) = lim π (π‘) = lim π(π‘) = 0. π‘ββ π‘ββ π‘ββ π‘ββ π‘ββ Corollary 3.2. Let π½ > πΏ. (i) If β0 (π½) β€ 1, then for all initial conditions (π(0), πΏ(0), πΌ(0), π (0), π(0)) β Ξπ·0 we have lim π(π‘) = lim π (π‘) = +β and lim πΏ(π‘) = lim πΌ(π‘) = lim π(π‘) = 0. π‘ββ doi:10.11131/2017/101263 π‘ββ π‘ββ π‘ββ π‘ββ Page 11 Research in Applied Mathematics Table 1: Parameter values for (1). parameter value (case π½ = πΏ) value (case π½ < πΏ) value (case π½ > πΏ) πΌ 0.43 0.43 0.43 π½ 0.0011 0.0011 0.00167 πΏ 0.0011 0.00167 0.0011 π 0.0050 0.0050 0.0050 π·0 50 50 50 (ii) If β0 (π½) > 1, then for all initial conditions (π(0), πΏ(0), πΌ(0), π (0), π(0)) β Ξπ·0 \Ξπ·0 we have lim π(π‘) = lim πΏ(π‘) = lim πΌ(π‘) = lim π (π‘) = lim π(π‘) = +β. π‘ββ π‘ββ π‘ββ π‘ββ π‘ββ (iii) If β0 (π½) > 1, then for all initial conditions (π(0), πΏ(0), πΌ(0), π (0), π(0)) β Ξπ·0 we have lim π(π‘) = lim π (π‘) = +β and lim πΏ(π‘) = lim πΌ(π‘) = lim π(π‘) = 0. π‘ββ π‘ββ π‘ββ π‘ββ π‘ββ Remark 3.1. In the above results we can see that asymptotic behaviors of total population and infection subclasses depend on the values of birth and death rates and initial conditions (Figure 3). 4. Numerical Simulations In this section we give numerical simulations for our model. The parameters values used were inspired from [4, 5] (see Table 1). We discuss the simulation results of the system (1) according to the values of π½ and πΏ. 4.1. Case π½ = πΏ (1) When β0 (πΏ) β€ 1, the disease free equilibrium πΈπ is globally asymptotically stable in Ξπ· (see Figure 4). (2) When β0 (πΏ) > 1, the endemic equilibrium πΈ β is globally asymptotically stable in Ξπ· \Ξπ· and if the initial condition is in Ξπ· , the solution tends to disease free equilibrium πΈπ (see Figure 5). 4.2. Case π½ < πΏ In this case we have extinction of total dog population (see Figure 6). 4.3. Case π½ > πΏ (1) When β0 (π½) β€ 1 (i.e. π½ > π½1 ), the disease dies that is lim πΏ(π‘) = πΌ(π‘) = π(π‘) = 0, and π‘ββ total dog population increases exponentially, that is lim π(π‘) = π(π‘) = π (π‘) = β (see π‘ββ Figure 7). doi:10.11131/2017/101263 Page 12 Research in Applied Mathematics Figure 4: Simulation results for β0 (πΏ) = 0.4806, πΆ = 0.0015 and initial condition (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (4, 5, 20, 10, 11) Figure 5: Simulation results for β0 (πΏ) = 8.9076, πΆ = 0.0278 and initial condition (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (4, 5, 20, 10, 11) (resp. (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (29, 0, 0, 10, 11)) in left (resp. right) ο¬gure. (2) When β0 (π½) > 1 (i.e. π½ < π½1 ), all subclasses of π· grow and we have lim πΏ(π‘) = πΌ(π‘) = π‘ββ π(π‘) = π(π‘) = π (π‘) = β if the initial condition is in Ξπ· \Ξπ· . The disease dies if the initial condition is in Ξπ· , in this case we have lim πΏ(π‘) = πΌ(π‘) = π(π‘) = 0 and lim π(π‘) = π(π‘) = π‘ββ π‘ββ π (π‘) = β (see Figure 8). 5. Conclusions We have studied a ZVL mathematical model considered in [1, 4, 5] where only constant dog population is considered. In our work we have investigated the both cases where π· is constant or not, our main results are given in Theorems 3, 4 and 6. . In fact, in the case of constant dog population, we have analyzed the bifurcation of disease free equilibrium πΈπ to the endemic equilibrium πΈ β (Theorem 3), where stability is transmitted from πΈπ to πΈ β , the bifurcation studied with respect to the force of infection πΆ, this is possible doi:10.11131/2017/101263 Page 13 Research in Applied Mathematics Figure 6: Simulation results for β0 (π½) = 5.3659, πΆ = 0.0278 and initial condition (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (4, 5, 20, 10, 11). Figure 7: Simulation results for β0 (π½) = 0.2895, πΆ = 0.0015 and initial condition (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (4, 5, 20, 10, 11). for πΆ = πΆ1 corresponding to the basic reproduction number β0 (πΏ) = 1. In Theorem 4, we have found Lyapunov functions to prove the global stability of equilibria Μ πΈπ and Μ πΈ β . These results β allow us to ο¬nd a global asymptotic stability domains of πΈπ and πΈ (Corollary 5). In the case of non constant dog population, we have transformed (1) to a new model (7) equivalent to (1) by the mean of fraction of subclasses of the dog population π·. We have obtained an interesting results concerning the behavior of each subclasses of π· (Corollaries 7 and 8). Our results allows us to determine the cases where the infection goes to extinction or persistence depending on the parameter values. In fact, the birth and death rates values π½ and πΏ are important for the behavior of the size of total population π·, which remains constant for equal values of birth and death rates. If π½ < πΏ the total population goes to zero (Figure 6). In the contrary, if π½ > πΏ then total population explodes, in this case the behavior of the infection depends on the value of the basic reproduction number β0 (π½) and on domains of global asymptotic stability of the disease free doi:10.11131/2017/101263 Page 14 Research in Applied Mathematics Figure 8: Simulation results for β0 (πΏ) = 5.3659, πΆ = 0.0278 and initial condition (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (4, 5, 20, 10, 11) (resp. (π(0), πΏ(0), πΌ(0), π (0), π(0)) = (29, 0, 0, 10, 11)) in left (resp. right) ο¬gure. and endemic equilibria. In fact, for β0 (π½) β€ 1 the infection subclasses go to extinction (Figure 7), but for β0 (π½) > 1 the behaviors of πΌ and πΏ depend on the domain of initial conditions, more precisely the infection vanishes only for πΌ(0) = πΏ(0) = 0 (Figure 8). If birth and death rates are equal then the behavior of infection subclasses goes to extinction for β0 (πΏ) β€ 1 (Figure 4). The infection persists if β0 (π½) > 1 for all initial conditions such that πΌ(0) β 0 β πΏ(0) (Figure 5). Moreover, our results are illustrated by interesting numerical simulations for each cases. This work could be continued, for example to see in what cases we must use control of the disease in order to reduce infection or to eradicate it. We can also consider the interaction with infected dog population and populations of sandο¬ies and humans in order to obtain a more global model. Competing Interests The authors declare that they have no competing interests. Acknowledgment This work was partially supported by the MESRS (Algeria), through CNEPRU research project contract B02120100005. References [1] F. Boukhalfa, M. Helal, and A. Lakmeche, βVisceral leishmania model,β ITM web of conferences, vol. 4, Article ID 01007, pp. 1β7, 2015. [2] C. Castillo-Chavez and B. Song, βDynamical models of tuberculosis and their applications,β Mathematical Biosciences and Engineering. MBE, vol. 1, no. 2, pp. 361β404, 2004. [3] D. N. C. C. Costa, C. T. Codeço, M. A. Silva, and G. L. Werneck, βCulling Dogs in Scenarios of Imperfect Control: Realistic Impact on the Prevalence of Canine Visceral Leishmaniasis,β PLoS Neglected Tropical Diseases, vol. 7, no. 8, Article ID e2355, 2013. doi:10.11131/2017/101263 Page 15 Research in Applied Mathematics [4] O. Courtenay, R. J. Quinnell, L. M. Garcez, J. J. Shaw, and C. Dye, βInfectiousness in a cohort of brazilian dogs: Why culling fails to control visceral leishmaniasis in areas of high transmission,β Journal of Infectious Diseases, vol. 186, no. 9, pp. 1314β1320, 2002. [5] C. Dye, βThe logic of visceral leishmaniasis control,β American Journal of Tropical Medicine and Hygiene, vol. 55, no. 2, pp. 125β130, 1996. [6] I. M. ELmojtaba, J. Y. T. Mugisha, and M. Hashim, βVaccination model for visceral leishmaniasis with infective immigrants,β Mathematical Methods in the Applied Sciences, vol. 36, no. 2, pp. 216β226, 2013. [7] I. M. ELmojtaba, J. Y. T. Mugisha, and M. H. A. Hashim, βMathematical analysis of the dynamics of visceral leishmaniasis in the Sudan,β Applied Mathematics and Computation, vol. 217, no. 6, pp. 2567β2578, 2010. [8] K. K. Gorahava, J. M. Rosenberger, and A. Mubayi, βOptimizing insecticide allocation strategies based on houses and livestock shelters for visceral leishmaniasis control in Bihar, India,β American Journal of Tropical Medicine and Hygiene, vol. 93, no. 1, pp. 114β122, 2015. [9] L. M. Ribas, V. L. Zaher, H. J. Shimozako, and E. Massad, βEstimating the optimal control of zoonotic visceral leishmaniasis by the use of a mathematical model,β The Scientiο¬c World Journal, vol. 2013, Article ID 810380, 2013. [10] A. Stauch, R. R. Sarkar, A. Picado et al., βVisceral leishmaniasis in the indian subcontinent: Modelling epidemiology and control,β PLoS Neglected Tropical Diseases, vol. 5, no. 11, Article ID e1405, 2011. [11] WHO., βControl of the leishmaniases,β WHO, Geneva, 2010, Report of a meeting of the WHO expert committee on the control of leishmaniases. WHO Technical Report Series 949. doi:10.11131/2017/101263 Page 16
© Copyright 2026 Paperzz