H. Madsen, Time Series Analysis, Chapmann Hall Time Series Analysis Henrik Madsen [email protected] Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby Henrik Madsen 1 H. Madsen, Time Series Analysis, Chapmann Hall Outline of the lecture Practical information Introductory examples (See also Chapter 1) A brief outline of the course Chapter 2: Multivariate random variables The multivariate normal distribution Linear projections Example Henrik Madsen 2 H. Madsen, Time Series Analysis, Chapmann Hall Introductory example – shares (COLO B 18m) From www.cse.dk Henrik Madsen 3 H. Madsen, Time Series Analysis, Chapmann Hall 2000 1200 800 Heat Consumption (GJ/h) Consumption of District Heating (VEKS) – data Nov Dec Jan Feb Apr Mar Apr 1996 5 0 −5 −10 Air Temperature (°C) 10 1995 Mar Nov Dec Jan Feb 1995 Henrik Madsen 1996 4 H. Madsen, Time Series Analysis, Chapmann Hall 2000 1500 1000 Heat Consumption (GJ/h) 2500 Consumption of DH – simple model −15 −10 −5 0 Air Temperature (°C) Henrik Madsen 5 5 10 H. Madsen, Time Series Analysis, Chapmann Hall Consumption of DH – model error 400 0 −400 Model Error (GJ/h) Model Error Nov Dec Jan Feb 1995 Mar Apr Mar Apr 1996 400 0 −400 Model Error (GJ/h) Model Error as it should be if the model were OK Nov Dec Jan Feb 1995 Henrik Madsen 1996 6 H. Madsen, Time Series Analysis, Chapmann Hall A brief outline of the course General aspects of multivariate random variables Prediction using the general linear model Time series models Some theory on linear systems Time series models with external input Some goals: Characterization of time series / signals; correlation functions, covariance functions, spectral distributions, stationarity, ergodicity, linearity, . . . Signal processing; filtering, sampling, smoothing Modelling; with or without external input Prediction / Control Henrik Madsen 7 H. Madsen, Time Series Analysis, Chapmann Hall Multivariate random variables Joint and marginal densities Conditional distributions Expectations and moments Moments of multivariate random variables Conditional expectation The multivariate normal distribution Distributions derived from the normal distribution Linear projections Henrik Madsen 8 H. Madsen, Time Series Analysis, Chapmann Hall Multivariate random variables Definition (n-dimensional random variable; random vector) X1 X2 X= . .. Xn Joint distribution function: F (x1 , · · · , xn ) = P{X1 ≤ x1 , · · · , Xn ≤ xn } Henrik Madsen 9 H. Madsen, Time Series Analysis, Chapmann Hall Multivariate random variables Probability density function (continuous case): ∂ n F (x1 , · · · , xn ) f (x1 , · · · , xn ) = ∂x1 · · · ∂xn F (x1 , · · · , xn ) = Z x1 Z ··· −∞ xn −∞ f (t1 , · · · , tn ) dt1 . . . dtn Probability density function (discrete case): f (x1 , · · · , xn ) = P{X1 = x1 , · · · , Xn = xn } Henrik Madsen 10 H. Madsen, Time Series Analysis, Chapmann Hall The Multivariate Normal Distribution The joint p.d.f. 1 1 √ fX (x) = exp − (x − µ)T Σ−1 (x − µ) 2 (2π)n/2 det Σ Σ must be positive semidefinite Notation: X ∼ N(µ, Σ) Standardized multivariate normal: X ∼ N(0, I) N(µ, Σ) = µ + T N(0, I), where Σ = T T T If X ∼ N(µ, Σ) and Y = a + BX then Y ∼ N(a + Bµ, BΣB T ) More relations between distributions in Sec. 2.7 Henrik Madsen 11 H. Madsen, Time Series Analysis, Chapmann Hall Marginal density function Sub-vector: (X1 , · · · , Xk )T (k < n) Marginal density function: Z ∞ Z fS (x1 , · · · , xk ) = ··· −∞ ∞ −∞ f (x1 , · · · , xn ) dxk+1 · · · dxn Marginal histogram of 100000 samples 4 0.10 15 Density 0.08 0.06 0 0.04 −2 0.02 −4 x2 Percent of Total x2 2 10 5 0.00 −4 −2 0 2 x1 4 0 −4 −2 0 x1 x1 Henrik Madsen 12 2 4 H. Madsen, Time Series Analysis, Chapmann Hall Conditional distributions The conditional density of Y given X = x is defined as (fX (x) > 0): 0.10 2 0.08 0.06 y fX,Y (x, y) fY |X=x (y) = fX (x) 4 0 0.04 −2 (joint density of (X, Y ) divided by the marginal density of X evaluated at x) 0.02 −4 0.00 −4 −2 0 x Henrik Madsen 13 2 4 H. Madsen, Time Series Analysis, Chapmann Hall Independence If knowledge of X does not give information about Y we get fY |X=x (y) = fY (y) This leads to the following definition of independence: fX,Y (x, y) = fX (x)fY (y) Henrik Madsen 14 H. Madsen, Time Series Analysis, Chapmann Hall Expectation Let X be a univariate random variable with density fX (x). The expectation of X is then defined as: Z ∞ E[X] = xfX (x)dx (continuous case) −∞ E[X] = X xP (X = x) (discrete case) all x Calculation rule: E[a + bX1 + cX2 ] = a + b E[X1 ] + c E[X2 ] Henrik Madsen 15 H. Madsen, Time Series Analysis, Chapmann Hall Moments and variance n’th moment: n E[X ] = Z ∞ xn fX (x) dx −∞ n’th central moment: E[(X − E[X])n ] = Z ∞ −∞ (x − E[X])n fX (x) dx The 2’nd central moment is called the variance: V [X] = E[(X − E[X])2 ] = E[X 2 ] − (E[X])2 Henrik Madsen 16 H. Madsen, Time Series Analysis, Chapmann Hall Covariance Covariance: Cov[X1 , X2 ] = E[(X1 −E[X1 ])(X2 −E[X2 ])] = E[X1 X2 ]−E[X1 ]E[X2 ] Variance and covariance: V [X] = Cov[X, X] Calculation rule: Cov[aX1 + bX2 , cX3 + dX4 ] = ac Cov[X1 , X3 ] + ad Cov[X1 , X4 ] + bc Cov[X2 , X3 ] + bd Cov[X2 , X4 ] The calculation rule can be used for the variance also Henrik Madsen 17 H. Madsen, Time Series Analysis, Chapmann Hall Expectation and Variance for Random Vectors Expectation: E[X] = [E[X1 ] E[X2 ] . . . E[Xn ]]T Variance-covariance (matrix): ΣX = V [X] = E[(X − µ)(X − µ)T ] = V [X1 ] Cov[X1 , X2 ] · · · Cov[X2 , X1 ] V [X2 ] ··· .. . Cov[Xn , X1 ] Cov[Xn , X2 ] · · · Cov[X1 , Xn ] Cov[X2 , Xn ] .. . Correlation: Cov[Xi , Xj ] σij ρij = p = σi σj V [Xi ]V [Xj ] Henrik Madsen 18 V [Xn ] H. Madsen, Time Series Analysis, Chapmann Hall Expectation and Variance for Random Vectors The correlation matrix R = ρ is an arrangement of ρij in a matrix Covariance matrix between X (dim. p) and Y (dim. q ): ΣXY T = C[X, Y ] = E (X − µ)(Y − ν) Cov[X1 , Y1 ] · · · Cov[X1 , Yq ] .. .. = . . Cov[Xp , Y1 ] · · · Cov[Xp , Yq ] Calculation rules – see the book. The special case of the variance C[X, X] = V [X] results in V [AX] = AV [X]AT Henrik Madsen 19 H. Madsen, Time Series Analysis, Chapmann Hall Conditional expectation E[Y |X = x] = Z ∞ −∞ yfY |X=x (y) dy E[Y |X] = E[Y ] if andY are independent E[Y ] = E E[Y |X] E[g(X)Y |X] = g(X)E[Y |X] E[g(X)Y ] = E g(X)E[Y |X] E[a|X] = a E[g(X)|X] = g(X) E[cX + dZ|Y ] = cE[X|Y ] + dE[Z|Y ] Henrik Madsen 20 H. Madsen, Time Series Analysis, Chapmann Hall Variance separation Definition of conditional variance and covariance: T V [Y |X] = E Y − E[Y |X] Y − E[Y |X] |X T C[Y , Z|X] = E Y − E[Y |X] Z − E[Z|X] |X The variance separation theorem: V [Y ] = E V [Y |X] + V E[Y |X] C[Y , Z] = E C[Y , Z|X] + C E[Y |X], E[Z|X] Henrik Madsen 21 H. Madsen, Time Series Analysis, Chapmann Hall Linear Projections Consider two random vectors Y and X , then E Y X = µY µX and V Y X = ΣY Y ΣXY ΣY X ΣXX Consider the linear projection: E[Y |X] = a + BX Then: E[Y |X] = µY + ΣY X ΣXX −1 (X − µX ) V [Y − E[Y |X]] = ΣY Y − ΣY X ΣXX −1 ΣY X T C Y − E[Y |X], X = 0 The linear projection above has minimal variance among all linear projections. Henrik Madsen 22 H. Madsen, Time Series Analysis, Chapmann Hall Air pollution in cities Carstensen (1990) has used time series analysis to set up models for N O and N O2 at Jagtvej in Copenhagen Measurements of N O and N O2 available every third hour (00, 03, 06, 09, 12, . . . ) We have µN O2 = 48µg/m3 and µN O = 79µg/m3 In the model X1,t = N O2,t − µN O2 and X2,t = N Ot − µN O is used Henrik Madsen 23 H. Madsen, Time Series Analysis, Chapmann Hall Air pollution in cities – model and forecast X1,t X2,t = 0.9 −0.1 0.4 0.8 X1,t−1 X2,t−1 + (µg/m3 )2 ξ1,t ξ2,t X t = ΦX t−1 + ξt V [ξt ] = Σ = σ12 σ21 σ12 σ22 = 30 21 21 23 Assume that t corresponds to 09:00 today and we have measurements 64 µg/m3 N O2 and 93 µg/m3 N O Forecast the concentrations at 12:00 (t + 1) What is the variance-covariance of this forecast? Henrik Madsen 24 H. Madsen, Time Series Analysis, Chapmann Hall Air pollution in cities – linear projection At 12:00 (t + 1) we now assume that N O2 is measured with 67 µg/m3 as the result, but N O cannot be measured due to some trouble with the equipment. Estimate the missing N O measurement. What is the variance of the error of the estimation? Henrik Madsen 25
© Copyright 2025 Paperzz