Each system of differential equations is a model for two species that

Each system of differential equations is a model for two species
that either compete for the same resources or cooperate for mutual
benefit (flowering plants and insect pollinators, for instance).
Decide which of the following systems describes the competition
model.
50%
1.
50%
2.
1
2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
33%
1.
33%
33%
At t = 3 the population of species 1
reaches a maximum of about 200.
At t = 2 the population of species 2
reaches a maximum of about 100.
At t = 2 the population of species 2
reaches a maximum of about 190
2.
3.
1
2
3
4
5
6
7
8
9
10
11
12
13
21
22
23
24
25
26
27
28
29
30
31
32
33
41
42
43
44
45
46
47
48
49
50
1
14
15
16
2
17
18
319
20
34
35
36
37
38
39
40
33%
33%
33%
1. A=9,000,L=400
2. A=10,000,L=400
3. A=8,000,L=200
1
2
3
4
5
6
7
8
9
10
11
12
13
21
22
23
24
25
26
27
28
29
30
31
32
33
41
42
43
44
45
46
47
48
49
50
1
14
15
16
2
17
18
319
20
34
35
36
37
38
39
40
1. Both populations are
stable
2. In the absence of
wolves, the rabbit
population is always
5000
3. Zero populations
33%
1
2
3
4
5
6
7
8
9
10
11
12
13
21
22
23
24
25
26
27
28
29
30
31
32
33
41
42
43
44
45
46
47
48
49
50
1
33%
2
33%
14
15
16
17
18
319
20
34
35
36
37
38
39
40
33%
1.
33%
33%
At t = C number of rabbits
decreases to about 1000.
At t = B the number of foxes
reaches a maximum of about
2400.
At t = B number of rabbits
rebounds to 100.
2.
3.
1
2
3
4
5
6
7
8
9
10
11
12
13
21
22
23
24
25
26
27
28
29
30
31
32
33
41
42
43
44
45
46
47
48
49
50
1
14
15
16
2
17
18
319
20
34
35
36
37
38
39
40