Name: _________________________________ Date: __________________ Period: ________ Even More Geometric Proofs If two angles form a linear pair, then they are supplementary. If two angles are supplementary to the same angle, then the two angles are congruent. Linear Pair Theorem Congruent Supplements Theorem Right Angle Congruence Theorem All right angles are congruent. Congruent Complements Theorem If two angles are complementary to the same angle, then the two angles are congruent. Vertical Angles Theorem Vertical angles are congruent. ⃗⃗⃗⃗⃗ bisects ∠AOC, ⃗⃗⃗⃗⃗ 1. Given: 𝑂𝐵 𝑂𝐸 bisects ∠DOF, ∠AOB ≅ ∠DOE Prove: ∠EOF ≅ ∠BOC Statements ⃗⃗⃗⃗⃗ bisects ∠AOC, ⃗⃗⃗⃗⃗ 1. 𝑂𝐵 𝑂𝐸 bisects ∠DOF 2. ∠AOB ≅ ∠BOC, ∠DOE ≅ ∠EOF 3. ∠AOB ≅ ∠DOE 4. ∠AOB ≅ ∠EOF 5. ∠EOF ≅ ∠BOC Reasons 1. 2. 3. 4. 5. Choices: Definition of Angle Bisector Given Transitive Property of Congruence 2. Given: ̅̅̅̅ 𝐴𝐵 ≅ ̅̅̅̅ 𝐶𝐷 ̅̅̅̅ ≅ 𝐵𝐷 ̅̅̅̅ Prove: 𝐴𝐶 Choices: Addition Property Definition of Congruent Segments Given Reflexive Property Segment Addition Postulate Substitution Property 3. Given: RS = UV, ST = TU ̅̅̅̅ ≅ ̅̅̅̅ Prove: 𝑅𝑇 𝑇𝑈 Statements 1. RS = UV, ST = TU 2. RS + ST = RT, TU + UV = TV 3. RS + ST = TU + UV 4. RT = TV ̅̅̅̅ ≅ 𝑇𝑈 ̅̅̅̅ 5. 𝑅𝑇 Reasons 1. 2. 3. 4. 5. Choices: Addition Property Definition of Congruent Segments Given Segment Addition Postulate Substitution Property 4. Given: ∠2 ≅ ∠4 Prove: m∠1 = m∠3 Choices: Congruent Supplements Theorem Definition of Congruent Angles Given Linear Pair Theorem 5. Given: ∠WXY is a right angle, ∠1 ≅ ∠3 Prove: ∠1 and ∠2 are complementary Statements 1. ∠WXY is a right angle 2. m∠WXY = 90° 3. m∠WXY = m∠2 + m∠3 4. m∠2 + m∠3 = 90° 5. ∠1 ≅ ∠3 6. m∠1 = m∠3 7. m∠2 + m∠1 = 90° 8. ∠1 and ∠2 are complementary Reasons 1. 2. 3. 4. 5. 6. 7. 8. Choices: Angle Addition Postulate Definition of Complementary Angles Definition of Congruent Angles Definition of Right Angle Given Substitution Property 6. Given: ∠1 and ∠2 are supplementary, ∠1 ≅ ∠2 Prove: ∠1 and ∠2 are right angles Choices: Definition of Congruent Angles Definition of Right Angle Definition of Supplementary Angles Division Property Given Simplify Substitution Property 9. Given: ∠1 ≅ ∠4 Prove: ∠2 ≅ ∠3 Choices: Given Transitive Property Vertical Angles Theorem 10. Given: Prove: ⃗⃗⃗⃗⃗⃗ 𝐵𝐷 bisects ∠ABC ⃗⃗⃗⃗⃗ 𝐵𝐺 bisects ∠FBH Choices: Definition of Angle Bisector Given Transitive Property Vertical Angles Theorem 11. Given: ∠3 is a right angle Prove: ∠4 is a right angle Choices: Definition of Right Angle Definition of Supplementary Angles Given Linear Pair Theorem Substitution Property Subtraction Property 12. Given: ∠2 ≅ ∠4 Prove: ∠1 ≅ ∠3 Statements 1. ∠2 ≅ ∠4 2. ∠1 ≅ ∠2, ∠3 ≅ ∠4 3. ∠1 ≅ ∠4 4. ∠1 ≅ ∠3 Reasons 1. 2. 3. 4. Choices: Given Transitive Property Vertical Angles Theorem
© Copyright 2026 Paperzz