DARTTutorialSec'on5: ComprehensiveFilteringTheory:Non-Iden'ty Observa'onsandtheJointPhaseSpace ©UCAR TheNa'onalCenterforAtmosphericResearchissponsoredbytheNa'onalScienceFounda'on. Anyopinions,findingsandconclusionsorrecommenda'onsexpressedinthispublica'onarethose oftheauthor(s)anddonotnecessarilyreflecttheviewsoftheNa'onalScienceFounda'on. AMoreGeneralContextforFilteringwithGeophysicalModels Dynamicalsystemgovernedby(stochas'c)DifferenceEqua'on: dxt ( x t ,t ) d β t , = f ( x t ,t ) + G t ≥ 0 (1) (2) Observa'onsatdiscrete'mes: ( xk,t k ) + v k ; yk = h k = 1,2,...; t k+1 > t k ≥ t 0 Observa'onalerrorwhitein'meandGaussian(nice,notessen'al). ( v → 0, R N k k ) (3) (4) (5) Completehistoryofobserva'onsis: { Yτ = yl ;tl ≤ τ } Goal:Findprobabilitydistribu'onforstateat'met: p (x,t | Yt ) DARTTutorialSec'on5:Slide2 AMoreGeneralContextforFilteringwithGeophysicalModels Statebetweenobserva'on'mesobtainedfromDifferenceEqua'on. Needtoupdatestategivennewobserva'ons: p x,t k | Yt k = p x,t k | yk ,Yt k−1 (6) ( ) ( ) ApplyBayes’rule: ( ) p x,t k | Ytk = p(yk k | Yt ) | x k ,Ytk−1 )p(x,t k−1 (7) (8) (9) p(yk | Ytk−1 ) Noiseiswhitein'me(3),so: ( ) p yk | xk ,Ytk−1 = p ( yk | xk ) Integratenumeratortogetnormalizingdenominator: k | Yt ) = p(y k | x)p(x,t k |Y t )dx p(y ∫ k−1 k−1 DARTTutorialSec'on5:Slide3 AMoreGeneralContextforFilteringwithGeophysicalModels Probabilitya`ernewobserva'on: p yk | x p x,t k | Ytk−1 p x,t k |Yt = k p(yk | ξ )p(ξ ,t k | Yt )d ξ ( ) ( ∫ ) ( ) (10) k−1 Exactlyanalogoustoearlierderiva'onexceptthatxandyarevectors. EXCEPT,noguaranteewehavepriorsampleforeachobserva'on. SO,let’smakesurewehavepriorsby‘extending’statevector. DARTTutorialSec'on5:Slide4 AMoreGeneralContextforFilteringwithGeophysicalModels Extendingthestatevectortojointstate-observa'onvector. yk = h x k ,tk + vk ; k = 1,2,...; t k+1 > t k ≥ t 0 (2) ( ) Applyinghtoxatagiven'megivesexpectedvaluesofobserva'ons. Getpriorsampleofobserva'onsbyapplyinghtoeachsampleof statevectorx. Letz = [x, y] bethecombinedvectorofstateandobserva'ons. DARTTutorialSec'on5:Slide5 AMoreGeneralContextforFilteringwithGeophysicalModels NOW,wehaveapriorforeachobserva'on: p yk | z p z,t k | Yt k−1 p z,t k | Ytk = ( ) ( ∫ p(y ) k ( ) (10.ext) | ξ )p(ξ ,t k | Ytk−1 )d ξ DARTTutorialSec'on5:Slide6 DealingwithManyObserva'ons Onemoreissue:dealingwithmanyobserva'onsinsetyk? Letykbecomposedofssubsetsofobserva'ons: 1 2 s y = y , y ,..., y k k k k Observa'onalerrorsforobs.insetiindependentofthoseinsetj. s i p y | z = p y Then: k k |z i=1 Canrewrite(10.ext)asseriesofproductsandnormaliza'ons. { ( ) ∏ ( } ) DARTTutorialSec'on5:Slide7 DealingwithManyObserva'ons Onemoreissue:dealingwithmanyobserva'onsinsetyk? Implica'on:canassimilateobserva'onsubsetssequen'ally. Ifsubsetsarescalar(individualobs.havemutuallyindependent errordistribu'ons),canassimilateeachobserva'onsequen'ally. Ifnot,havetwoop'ons: 1. Repeateverythingabovewithmatrixalgebra. 2. Dosingularvaluedecomposi'on;diagonalizeobs.errorcovariance. Assimilateobserva'onssequen'allyinrotatedspace. Rotateresultbacktooriginalspace. Goodnews:Mostgeophysicalobs.haveindependenterrors! DARTTutorialSec'on5:Slide8 HowanEnsembleFilterWorksforGeophysicalDataAssimila'on 1. Usemodeltoadvanceensemble(3membershere)to'me atwhichnextobserva'onbecomesavailable. Ensemblestate es'matea`erusing previousobserva'on (analysis) Ensemblestate at'meofnext observa'on (prior) DARTTutorialSec'on5:Slide9 HowanEnsembleFilterWorksforGeophysicalDataAssimila'on 2. Getpriorensemblesampleofobserva'on,y = h(x),by applyingforwardoperatorhtoeachensemblemember. Theory:observa'ons frominstrumentswith uncorrelatederrorscan bedonesequen'ally. DARTTutorialSec'on5:Slide10 HowanEnsembleFilterWorksforGeophysicalDataAssimila'on 3. Getobservedvalueandobserva'onalerrordistribu'on fromobservingsystem. DARTTutorialSec'on5:Slide11 HowanEnsembleFilterWorksforGeophysicalDataAssimila'on 4. Findtheincrementsforthepriorobserva'onensemble (thisisascalarproblemforuncorrelatedobserva'onerrors). Note:Differencebetween variousensemblefiltermethods isprimarilyinobserva'on incrementcalcula'on. DARTTutorialSec'on5:Slide12 HowanEnsembleFilterWorksforGeophysicalDataAssimila'on 5. Useensemblesamplesofyandeachstatevariabletolinearly regressobserva'onincrementsontostatevariableincrements. Theory:impactofobserva'on incrementsoneachstate variablecanbehandled independently! DARTTutorialSec'on5:Slide13 HowanEnsembleFilterWorksforGeophysicalDataAssimila'on 6. Whenallensemblemembersforeachstatevariableare updated,thereisanewanalysis.Integrateto'meofnext observa'on… DARTTutorialSec'on5:Slide14 Non-Iden'tyObserva'onOperatorsinLorenz_63: Tryobservingmean(x,y),mean(y,z),mean(z,x)using obs_seq.out.averageasinputfile. Sameerrorvarianceandfrequencyaspreviously. Inmodels/lorenz_63/workeditinput.nml &filter_nml … obs_sequence_in_name = "obs_seq.out.z” Execute./filterprogramtoproduceanewassimila'on. Lookattheerrorsta's'csand'meserieswithMatlab. Recordtheerrorandspreadvaluesandcomparetoiden'tycase. Errorismuchlarger! Iden'tyobserva'onsremoveallregressionerror; canbeverymisleading. DARTTutorialSec'on5:Slide15 DARTTutorialIndextoSec'ons 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. FilteringForaOneVariableSystem TheDARTDirectoryTree DARTRunBmeControlandDocumentaBon HowshouldobservaBonsofastatevariableimpactanunobservedstatevariable? MulBvariateassimilaBon. ComprehensiveFilteringTheory:Non-IdenBtyObservaBonsandtheJointPhaseSpace OtherUpdatesforAnObservedVariable SomeAddiBonalLow-OrderModels DealingwithSamplingError MoreonDealingwithError;InflaBon RegressionandNonlinearEffects CreaBngDARTExecutables AdapBveInflaBon HierarchicalGroupFiltersandLocalizaBon QualityControl DARTExperiments:ControlandDesign DiagnosBcOutput CreaBngObservaBonSequences LostinPhaseSpace:TheChallengeofNotKnowingtheTruth DART-CompliantModelsandMakingModelsCompliant ModelParameterEsBmaBon ObservaBonTypesandObservingSystemDesign ParallelAlgorithmImplementaBon Loca'onmoduledesign(notavailable) Fixedlagsmoother(notavailable) Asimple1DadvecBonmodel:TracerDataAssimilaBon DARTTutorialSec'on5:Slide16
© Copyright 2025 Paperzz