國立雲林科技大學 National Yunlin University of Science and Technology N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman Zalik, Borut Zalik 2011 PRL Intelligent Database Systems Lab Outline Motivation Objective Methodology Experiments Conclusion Comments N.Y.U.S.T. I. M. 2 Intelligent Database Systems Lab Motivation N.Y.U.S.T. I. M. Most of the previous validity indices have been considerably dependent on the number of data objects in clusters, on cluster centroids and on average values. Most popular validity measures have the tendency to ignore clusters with low density and are not efficient in validation of partitions having different sizes and densities. 3 Intelligent Database Systems Lab Objective N.Y.U.S.T. I. M. Two cluster validity indices are proposed for efficient validation of partitions containing clusters that widely differ in sizes and densities. To design a cluster validity index that is suitable for the validation of partitions having different sizes and densities. A good partitions: Overlap Compactness Separation distance 4 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Review several popular validity indices Dunn index; D Indx XiE index Davies-Bouldin’s index; DB index C index G index G+ index Partition coefficient; PC index Classification entropy; CE index 5 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Review several popular validity indices. D Index G+ Index PC CE DB Index C Index G Index XiE 6 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. new clustering validity indices. SV-index Validation of index SV Fuzzification of the SV index The proposed index OS exploiting overlap and separation measures Overlap measure Separation measure and validity index SV Validation of index OS 7 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. SV-index a measure for partition validity that consists of clusters that widely differ in density or size 8 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Validation of index SV 9 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Fuzzification of the SV index A fuzzy version of the index SV is obtained by integrating the membership values in the variation measure. 10 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. The proposed index OS exploiting overlap and separation measure Experiment results suggested that inter-cluster separation plays a more important role in cluster validation. Indices are limited in their ability to compute the compactness and the separation in partitions having overlapping clusters and clusters of different sizes, which leads to an incorrect validation results. Considering these results a cluster validity index is suggested based on an overlap and separation measures. 11 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Overlap measure 12 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Separation measure and validity index SV 13 Intelligent Database Systems Lab Methodology N.Y.U.S.T. I. M. Validation of index OS 14 Intelligent Database Systems Lab Experiments N.Y.U.S.T. I. M. To demonstrate the effectiveness of the proposed SV and OS indices for determining the optional number of clusters. Artificial data set A1 Artificial data set A2 Artificial data set A3 Iris data set Wine data set Glass data set 15 Intelligent Database Systems Lab Experiments-Artificial data set A1 N.Y.U.S.T. I. M. 16 Intelligent Database Systems Lab Experiments-Artificial data set A2 N.Y.U.S.T. I. M. . 17 Intelligent Database Systems Lab Experiments-Artificial data set A3 N.Y.U.S.T. I. M. 18 Intelligent Database Systems Lab Experiments-Artificial data set A3 N.Y.U.S.T. I. M. 19 Intelligent Database Systems Lab Experiments -Iris data set. N.Y.U.S.T. I. M. . 20 Intelligent Database Systems Lab Experiments-Wine data set N.Y.U.S.T. I. M. 21 Intelligent Database Systems Lab Experiments-Wine data set N.Y.U.S.T. I. M. 22 Intelligent Database Systems Lab Conclusion N.Y.U.S.T. I. M. The experimental results proved that the new indices outperform the other considered indices, especially when cluster widely differ in sizes or densities. A good partition is expected to have low degree of overlap and a larger separation distance and compactness. The maximum value of the ratio of the SV index and the minimum value of the OS index indicate the optimal partition. 23 Intelligent Database Systems Lab Comments Advantage Drawback N.Y.U.S.T. I. M. …. Application Clustering Validity index 24 Intelligent Database Systems Lab
© Copyright 2026 Paperzz