Effects of surface oxide on wafer bonding of GaN and SiC Jaeseob Lee, Robert F. Davis, and Robert J. Nemanich North Carolina State University Raleigh, NC 27695-8202 USA February 12, 2002 Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Outline Motivation - GaN/SiC HBT Introduction - Wafer Bonding of GaN/SiC Experiment Results - AES of GaN,SiC - AFM of GaN/SiC - I-V of GaN/SiC Discussion Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB GaN/SiC HBT Advantage of GaN-SiC Device ; high temperature, high power, high frequency operation Al Emitter Contact n-GaN Emitter Al/Cr Base Contact Larger bandgap emitter -restrict the diffusion of hole from base to emitter → high electron injection efficiency -heavily doped base → low base resistance Indirect bandgap base -longer carrier lifetime(longer diffusion length) → high base transport Short base width higher Emitter efficiency Larger current gain Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors p-SiC Base n-SiC Collector Al/Cr Collector Contact GaN/SiC HBT proposed by J. Pankove, S.S. Chang, H.C. Lee, R.J. Moustakas, B. Van Zeghbroeck (Int. Electron Devices Meet Tech. Dig. ’94) NC STATE UNIVERSITY UCSB GaN/SiC WB Direct Growth Nucleation Problem Defect due to large mismatch Waferbonding GaN Reduce defect formation at interface No insulating buffer layer between GaN and SiC SiC Buffer Layer(AlN) Growth GaN Buffer Layer acts as a insulator SiC GaN AlN SiC Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB GaN/SiC WB Electronegativity values Element N C Si Ga Electronegativity 3.0 2.5 1.8 1.6 Ga N Si C Si–N C–Ga C–N Si–Ga Bond and ionic character Bond N-Ga N-Si C-Ga C-Si N-C Si-Ga Difference in Ionic Electronegativity Character 1.4 39% 1.2 30% 0.9 19% 0.7 12% 0.5 7% 0.2 1% Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors Schematic [1120] projection of the GaN/SiC interface NC STATE UNIVERSITY UCSB Processing Flow Chart Ex situ Cleaning Dicing into 12.8×6.5 mm2 pieces Degreasing, HF(SiC)/HCl(GaN) dip N2 blow dry Characterization (AFM,AES) Ex situ Bonding In situ Annealing 600, 800, 1000oC, 1hr Characterization (I-V) Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB AFM of GaN/SiC GaN SiC RMS roughness 20 ± 5 Å in 20×20 µm2 area of GaN and SiC Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB AES of GaN HCl dip 10min (0001)Ga GaN dN(E)/dE 200 0 -200 0 200 400 600 800 1000 1200 electron energy, eV Surface atomic concentration: Cl 0%, C 71%, N 33 8%, O 2 1%, Ga 57 9% Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB AES of (0001)Si SiC 100 Surface atomic concentration(%) SC1, SC2, 6H(0001)Si n-SiC dN(E)/dE HF(100:1) 1min HF(10:1) 10min 0 100 200 300 400 500 600 O 50 Si C 0 HF(100:1) 1min electron energy, eV HF(10:1) 10min Surface atomic concentration: Si 26 4%, C 20 4%, O 54 4% after HF(100:1) 1min dip Si 21 3%, C 73 13%, O 7 1% after HF( 10:1) 10min dip Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB IV of GaN/SiC(n-type to n-type) Ti n-SiC n-SiC 100 Ti HF(10:1) 10min I(mA) 50 HF(100:1) 1min 0 -50 -100 -5.0 -2.5 0.0 2.5 5.0 V(V) HF( 10:1) 10min dipped SiC to GaN pair shows more ohmic behavior Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Bonding result Bonding process to 2H (0001)Ga GaN 6H SiC surface (0001)Si HF 100:1 10:1 (000-1)C HF dip (min) Annealing Temp(oC) Annealing Time(min) Heating rate(oC/min) Bonding Results Trials 1 1000,800 240,60 10 10 1000,800 240,60 5 No 2 60 1000,800 60 5 Yes 2 10 1000,800 60 5 Yes 2 600 60 5 No 1 No (1 partial bonding) 11 100:1 1 1000 240,30 5 Yes 5 10:1 10 1000 240,60 5 Yes 2 800 60 5 Yes 1 600 60 5 No 1 Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Surface Conc. of SiC HF(100:1) dip of (0001)Si/(000-1)C 6HSiC 100 100 6H(0001)Si n-SiC 80 70 O 60 50 40 Si 30 20 C 10 80 70 60 50 40 30 Si 20 10 0 6H(000-1)C n-SiC C 90 Surface atomic concentration(%) Surface atomic concentration(%) 90 O 0 0 20 40 60 80 100 120 140 160 0 HF(100:1) dip time(min) 20 40 60 80 100 120 140 HF(100:1) dip time(min) Surface atomic concentration: SiC (0001)Si ; Si 274%, C 15 3%, O 575% after 1min dip Si 214%, C 7614%, O 31% after 60min dip SiC (000-1)C ; Si 234%, C 7313%, O 41% after 1min dip Si 214%, C 7614%, O 31% after 60min dip Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB 160 WB of GaN/SiC 600oC, 800oC, 1000oC 1hr annealing for WB 12.8 mm 1 mm 6.5 mm 1 mm Ti 260 µm nSiC 4~6E18 0.1 µm AlN Conductive 1 µm GaN <1E17 406 µm pSiC 3.5E18 Pt or Ti Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY 2H GaN(0001)Ga ; Degreasing, HCl 1min dip p-6H SiC(0001)Si ; Degreasing, HF(10:1) 10min dip UCSB IV of metal/SiC Metal SiC 100 Metal/polished side Ti/n-SiC 50 Pt/p-SiC I(mA) 800oC,20min 0 Ti/p-SiC n-SiC Ti -50 n-SiC Ti -100 -5.0 -2.5 0.0 2.5 V(V) 5.0 p-SiC Pt Metal/unpolished side Ohmic contact Ohmic behavior of Metal/SiC Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY 800oC 20min UCSB IV of GaN/SiC(n-type to n-type) Ti n-SiC n-SiC 100 Ti C-Ga I(mA) 50 Si-Ga 0 -50 -100 -5.0 -2.5 0.0 2.5 (0001)Si, (000-1)C SiC ; HF(10:1) 10min dip (0001)Ga GAN ; HCl 1min dip 5.0 V(V) (0001)C SiC/(0001)Ga GaN pair shows low resistance than (000-1)Si SiC/(0001)Ga GaN pair Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB IV of GaN/SiC(n-type to p-type) 1000ºC 1hr in-situ annealing Ti n-SiC p-SiC 100 Pt C-Ga I(mA) 50 Ti n-SiC p-SiC Si-Ga 0 Ti -50 -100 -5.0 -2.5 0.0 2.5 5.0 V(V) (0001)C SiC/(0001)Ga GaN pair and (000-1)Si SiC/(0001)Ga GaN pair show rectifying behavior Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB IV of GaN/SiC(n-type to p-type) 800ºC 1hr in-situ annealing Ti n-SiC p-SiC 100 Pt C-Ga I(mA) 50 Ti n-SiC p-SiC Si-Ga 0 Ti -50 -100 -5.0 -2.5 0.0 2.5 5.0 V(V) (0001)C SiC/(0001)Ga GaN pair shows rectifying behavior But (000-1)Si SiC/(0001)Ga GaN pair shows ohmic behavior Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB IV of GaN/SiC(n-type to p-type) 800ºC 1hr in-situ annealing Ti n-SiC p-SiC 100 Pt C-Ga I(mA) 50 Ti 0 n-SiC p-SiC Si-Ga Ti -50 -100 -20 -10 0 10 20 V(V) (0001)C SiC/(0001)Ga GaN pair shows rectifying behavior But (000-1)Si SiC/(0001)Ga GaN pair shows ohmic behavior Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB IR image of GaN/SiC 600ºC 1hr in-situ annealing 5mm 5mm (a) (0001)Si SiC/(0001)GaGaN (b) (000-1)C SiC/(0001)GaGaN (0001)C SiC/(0001)Ga GaN pair and (000-1)Si SiC/(0001)Ga GaN pair do not bond at 600ºC 1hr in-situ annealing Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Conclusion Polarity is important factor in WB of SiC/GaN (000-1)C n-SiC/(0001)Ga n-GaN pair has the low resistance (nearly Ohmic) (000-1)C p-SiC/(0001)Ga n-GaN pair keep good rectifying behavior at lower bonding temperature(800oC) No bonding happened at 600oC with wafer surface having RMS roughness 20Å in 20×20 µm2. Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Future Research Characterize the bonded interface with FiB-TEM Bond patterned GaN structures appropriate for HBT Explore improved polishing of SiC and GaN surface to get low T bonding Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB Fabrication of HBT 2in 1 µm nGaN 4~6E18 0.1µm AlN cunductive Substrate ; 260µm nSiC 4~6E18 From Dr. Davis group Epi 2 ; 0.2 µm pSiC 3.5E18 Epi 1 ; 12.0µm nSiC 6.9E15 Substrate ; 300µm nSiC 4~6E18 From Cree Research Inc. Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB After bonding & Polishing 6.5 mm 6.5 mm 2 μm 1 μm nSiC 4~6E18 0.1 μm AlN Conductive 1 μm nGaN 4~6E18 0.2 μm pSiC 3.5E18 Polishing SiC substrate ; 260µm to 50 µm Bonding Polishing SiC substrate : 50 µm to 2 µm 12 μm nSiC 6.9E15 by Diamond lapping film 300 μm substrate nSiC 4~6E18 GaN on Si wafer is easy for layer transfer Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors NC STATE UNIVERSITY UCSB RIE/metallizing Plan By Parallel-plate RIE RIE RIE Al Al/Cr 0.5 μm nGaN 4~6E18 0.2 μm pSiC 3.5E18 12 μm nSiC 6.9E15 substrate nSiC 4~6E18 Al/Cr SF6 500Å/min SiC 20min for 1μm Al deposition Cl2/Ar 4000Å/min GaN 2.5min for 1μm Compact Power Supplies Based on Heterojunction Switching in Wide Band Gap Semiconductors Al/Cr deposition NC STATE UNIVERSITY UCSB
© Copyright 2026 Paperzz