Mathematics for Computer Science MIT 6.042J/18.062J More Counting Albert R Meyer, November 16, 2009 lec 11M.1 Sum Rule |A ∪ B| = |A| + |B| A B for disjoint sets A, B Albert R Meyer, November 16, 2009 lec 11M.2 Sum Rule |A ∪ B| = ? A B What if not disjoint? Albert R Meyer, November 16, 2009 lec 11M.3 Inclusion-Exclusion |A B| =|A|+|B|-|A B| A B What if not disjoint? Albert R Meyer, November 16, 2009 lec 11M.4 Inclusion-Exclusion (3 Sets) |A∪B∪C| = |A|+|B|+|C| – |A∩B| – |A∩C| – |B∩C| + |A∩B∩C| A B C Albert R Meyer, November 16, 2009 lec 11M.8 Incl-Excl Formula: Proof A town has n clubs. Each club Si has a secretary Mi who knows if person x is a club member: Mi(x) = 1 if x in Si, = 0 if x not in Si. Albert R Meyer, November 16, 2009 lec 11M.10 Incl-Excl Formula: Proof Fact: |A| = sum of MA(x) over all x. Now Mi(x)Mj(x) is sec’y for Si∩Sj so |Si∩Sj| = sum of Mi(x)Mj(x) over all x, |Si∩Sj∩Sk| = x Mi(x)Mj(x)Mk(x) etc. Albert R Meyer, November 16, 2009 lec 11M.11 Incl-Excl Formula: Proof Let D ::= S1∪S2∪ ∪Sn sec’y MD(x)=0 iff Mi(x)=0 for all n clubs. So 1-MD(x) = (1-M1(x))(1-M2(x)) (1-Mn(x)) Albert R Meyer, November 16, 2009 lec 11M.12 Incl-Excl Formula: Proof 1-MD(x) = (1-M1(x))(1-M2(x)) so... MD(x) = i Mi(x) - i<jMi(x)Mj(x) + i<j<k (1-Mn(x)) Mi(x)Mj(x)Mk(x) + (-1)n+1 M1(x)M2(x) Albert R Meyer, November 16, 2009 Mn(x) lec 11M.13 Incl-Excl Formula: Proof 1-MD(x) = (1-M1(x))(1-M2(x)) now sum both sides over x MD(x) = i Mi(x) - i<jMi(x)Mj(x) + i<j<k (1-Mn(x)) Mi(x)Mj(x)Mk(x) + (-1)n+1 M1(x)M2(x) Albert R Meyer, November 16, 2009 Mn(x) lec 11M.14 Incl-Excl Formula: Proof 1-MD(x) = (1-M1(x))(1-M2(x)) now sum both sides over x |D| = i |Si| - i<jMi(x)Mj(x) + i<j<k (1-Mn(x)) Mi(x)Mj(x)Mk(x) + (-1)n+1 M1(x)M2(x) Albert R Meyer, November 16, 2009 Mn(x) lec 11M.15 Incl-Excl Formula: Proof 1-MD(x) = (1-M1(x))(1-M2(x)) now sum both sides over x |D| = i |Si| - i<j|Si∩Sj| + i<j<k (1-Mn(x)) Mi(x)Mj(x)Mk(x) + (-1)n+1 M1(x)M2(x) Albert R Meyer, November 16, 2009 Mn(x) lec 11M.16 Incl-Excl Formula: Proof 1-MD(x) = (1-M1(x))(1-M2(x)) now sum both sides over x |D| = i |Si| - i<j|Si∩Sj| + i<j<k (1-Mn(x)) |Si∩Sj∩Sk| + (-1)n+1 M1(x)M2(x) Albert R Meyer, November 16, 2009 Mn(x) lec 11M.17 Incl-Excl Formula: Proof 1-MD(x) = (1-M1(x))(1-M2(x)) now sum both sides over x |D| = i |Si| - i<j|Si∩Sj| + i<j<k (1-Mn(x)) |Si∩Sj∩Sk)| + (-1)n+1 |S1∩S2 ∩Sn| Albert R Meyer, November 16, 2009 lec 11M.18 Incl-Excl Formula: Proof |D| = + |Si| i<j|Si∩Sj| i i<j<k |Si∩Sj∩Sk| + (-1)n+1 |S1∩S2 ∩Sn| Albert R Meyer, November 16, 2009 lec 11M.19 bookkeeper rule 10! # permutations of the word 2!2!3! bookkeeper ? • # perms bo1o2k1k2e1e2pe3r = 10! • map perm o1be1o2k1rk2e2pe3 to o1be o2k1rk rk2e2pe pe3 obeokrkepe 1o • 2 o’s, 2 k’s, 3 e’s: map is 2!·2!·3!-to-1 Albert R Meyer, November 16, 2009 lec 11M.20 bookkeeper rule # permutations of a word with n1 a’s, n2 b’s, …, nk z’s is n! n ::= n ,n , ,n n !n ! n ! k 1 2 1 2 k multinomial coefficient Albert R Meyer, November 16, 2009 lec 11M.21 Team Problems Problems 1—3 (& maybe 4) Albert R Meyer, November 16, 2009 lec 11M.22
© Copyright 2026 Paperzz