ASMC 663 End-Of-Semester Presentation System Identification of Nonlinear State-Space Battery Models Wei He Department of Mechanical Engineering [email protected] Course Advisor: Prof. Balan, Prof. Ide Research Advisor: Dr. Chaochao Chen Dec. 11 2012 c a lc e TM 1 University of Maryland Background • Lithium-ion batteries are power sources for electric vehicles (EVs). • State of charge (SOC) estimation of batteries is important for the optimal energy control and residual range prediction of EVs. • SOC is the ratio between the remaining charge (Qremain) and the maximum capacity of a battery (Qmax) Qremain SOC Qmax Full: SOC = 100% c a lc e TM Empty: SOC=0% 2 University of Maryland State-Space Representation of A Battery System • Process function [1-3] : SOCk 1 1 0 SOCk t / Qmax SOC , k I V V L ,k 0 A B p , k 1 p , k Vp ,k t t where A exp B R p 1 exp C R C R p p p p • Measurement function: Problem Statement Vt ,k OCV ( SOCk ) R0 I L ,k V p ,k k • Process and measurement noise SOC ~ N 0, V ~ N 0, p ~ N 0, c a lc e TM Vp S OC The model parameters need to be identified Rp , C p , R0 , Qmax , , 3 soc Vp University of Maryland Problem Formulation • Estimate the unknown parameters Rp , C p , R0 , Qmax , , in soc Vp SOCk 1 1 0 SOCk t / Qmax SOC , k I V L ,k B p ,k 1 0 A V p ,k Vp ,k t t where A exp B R 1 exp p C R C R p p p p Vt ,k OCV ( SOCk ) R0 I L ,k V p ,k k based on the information in the measured input-output responses U1:N I t ,1 , I t , 2 ,..., I t , N , Y1:N Vt ,1 ,Vt , 2 ,...,Vt , N using a maximum likelihood framework ˆ arg max p (Y1:N ) arg max L (Y1:N ) c a lc e TM 4 University of Maryland Expectation Maximization (EM) • Expectation step (E step): calculate the expected value of the log likelihood function, with respect to the conditional distribution of XN given YN under the current estimate of the parameters k [4] Q , k Ek L X 1:N , Y1:N | Y1:N L X 1:N , Y1:N pk X 1:N | Y1:N dX 1:N where X is the state variables: SOC and Vp. • Maximization step (M step): find the parameter that maximizes this quantity: k 1 arg max Q , k If not converged, update k->k+1 and return to step 2 c a lc e TM 5 University of Maryland Expectation Maximization (EM) • Ref[4] have proved that Q ,k can be approximated by a particle smoother: Q ,k I1 I 2 I 3 M I1 w log pk x i 1 i 1 i 1| N N 1 M M I 2 log w pk x j t|N t 1 i 1 j 1 N 1 M j t 1 I 3 w log pk yt | x t 1 i 1 c a lc e TM i t|N 6 i t |x i t University of Maryland Particle Filter and Smoother • Particle smoother: P xt | Y1:N wti|N xt xti M i 1 i – The particle smoother weights wt| N can be recursively calculated from particle filter weights wti M i t|N w w w i t k 1 k t 1| N k t 1 i t P ( x | x ) vtk M where v wti P ( x t 1 | x t ) k t k i i 1 • Particle filter: n p( xt | Y1:N ) wti ( xt xti ) i 1 c a lc e TM 7 University of Maryland Particle Filtering • Model prediction given past measurements p( xk 1 | Y1:k ) p( xk 1 | xk ,Y1:k ) p( xk | Y1:k )dxk p( xk 1 | xk ) p( xk | Y1:k )dxk Process function c a lc e TM 8 University of Maryland Particle Filtering • Prediction update using current measurement p( xk 1 | Y1:k 1 ) p( xk 1 | Yk 1 , Y1:k ) posterior p(Yk 1 | xk 1,Y1:k ) p( xk 1 | Y1:k ) P( B | AC ) P( A | C ) p(Yk 1 | Y1:k ) P( A | BC ) P( B | C ) p(Yk 1 | xk 1 ) p( xk 1 | Y1:k ) p(Yk 1 | Y1:k ) p(Yk 1 | Y1:k ) p(Yk 1 | xk 1 ) p( xk 1 | Y1:k )dxk 1 Measurement Equation c a lc e TM 9 State Prediction University of Maryland Particle Filtering [5] P(x) x tk x tk+1 t actual state value actual state trajectory measured state value estimated state trajectory state particle value particle propagation state pdf (belief) particle weight c a lc e TM 10 • represent state as a pdf • sample the state pdf as a set of particles and associated weights • propagate particle values according to model • update weights based on measurement University of Maryland Particle Filtering Prediction step: use the state update model p(x k | Y1:k 1 ) p(x k | x k 1 ) p(x k 1 | Y1:k 1 )dx k 1 Update step: with measurement, update the prior using Bayes’ rule: p(Yk | x k ) p(x k | Y1:k 1 ) p(xk | Y1:k ) p(Yk | Y1:k 1 ) c a lc e TM 11 University of Maryland Particle Filter Algorithm [4-7] 1. Initialize particles, {x0i }iM1 ~ P ( x0 ) and set t = 1. 2. Predict the particles by drawing M i.i.d samples according to xti ~ P xt | xti1 , i 1,..., M 3. Compute the importance weights wti i 1 i P yt | x t i wti w x t P y M j 1 4. M t |x j t , i 1,..., M For each j = 1,…,M draw a new particle xti with replacement (resample) according to j P( xtj x t ) wti , i 1,..., M 5. If t < N increment t t 1 and return to step 2, otherwise terminate. c a lc e TM 12 University of Maryland Particle Smoother Algorithm [4-7] 1. i M Run the particle filter and store the predicted particles { x t }i 1 and their M weights wti , for t = 1,…,N. i 1 2. 3. Initialize the smoothed weights to be the terminal filtered weights wt at time t = N. wNi |N wNi , i 1,..., M and set t = N-1. i Compute the smoothed weights wti| N using the filtered weights wti i i i 1 i 1 and particles {x t , x t 1}iM1 via M i t|N w 4. M M w w i t k 1 k t 1| N k t 1 i t P ( x | x ) vtk M where v wti P ( x t 1 | x t ) k t k i i 1 Update t t 1. If t > 0 return to step 3, otherwise terminate. c a lc e TM 13 University of Maryland Simulated Data Sets • Parameter settings: Qmax 1.07 Ah R0 0.1 R p 0.1 C p 10 SOC 108 Vp 106 Q 104 Current • Process function: SOCk 1 1 0 SOCk t / Qmax SOC , k V V I L ,k 0 A B p ,k p ,k 1 Vp ,k t t where A exp B R 1 exp p C R C R p p p p Current (A) 4 Vt (V) • Process and measurement noise c a lc e TM SOC Vp ~ N 0, V -2 0 1000 2000 3000 4000 Time(s) Voltage 5000 6000 7000 8000 0 1000 2000 3000 4000 Time(s) 5000 6000 7000 8000 2 Vt ,k OCV ( SOCk ) R0 I L ,k V p ,k k 0 -4 • Measurement function: SOC ~ N 0, 2 p 1 0 ~ N 0, 14 -1 University of Maryland Simulated Hidden States Hidden States: SOC and Vp SOC 1 0.5 0 0 1000 2000 3000 4000 Time(s) 5000 6000 7000 8000 0 1000 2000 3000 4000 Time(s) 5000 6000 7000 8000 0.6 Vp 0.4 0.2 0 -0.2 c a lc e TM 15 University of Maryland Particle Filtering Result • Initial guess: SOC0 0.5 Vp 0 0 • Particle number:50 1 0 P0 0 1 1 SOC Estimated SOC 0.9 0.8 • RMS error = 0.0023 0.7 SOC 0.6 0.5 0.4 0.3 0.2 0.1 0 c a lc e TM 0 1000 16 2000 3000 4000 Time (S) 5000 6000 7000 8000 University of Maryland Particle Smoothing Result 1 SOC Estimated SOC 0.9 0.8 0.7 SOC 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1000 2000 3000 4000 Time (S) 5000 6000 7000 8000 RMS error = 0.0017 c a lc e TM 17 University of Maryland Project Schedule and Milestones • Project proposal: October 5 2012 • Algorithm Implementation: - Particle filter and smoother: December 1 2012 - The full algorithm (particle EM): February 1 2012 • Validation: March 15 2012 • Testing: April 15 2012 • Final Report: May 1 2012 c a lc e TM 18 University of Maryland References 1. 2. 3. 4. 5. 6. 7. H. He, R. Xiong, and H. Guo, Online estimation of model parameters and stateof-charge of LiFePO4 batteries in electric vehicles. Applied Energy, 2012. 89(1): p. 413-420. C. Hu, B.D. Youn, and J. Chung, A Multiscale Framework with Extended Kalman Filter for Lithium-Ion Battery SOC and Capacity Estimation. Applied Energy, 2012. 92: p. 694-704. H.W. He, R. Xiong, and J.X. Fan, Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies, 2011. 4(4): p. 582-598. T.B. Schön, A. Wills, and B. Ninness, System identification of nonlinear statespace models. Automatica, 2011. 47(1): p. 39-49. Bhaskar Saha, Introduction to Particle Filters, NASA. M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. Signal Processing, IEEE Transactions on, 2002. 50(2): p. 174-188. A. Doucet and A.M. Johansen, A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering, 2009: p. 656-704. c a lc e TM 19 University of Maryland
© Copyright 2026 Paperzz