Algebra II Module 3, Topic B, Lesson 12: Teacher

Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
Lesson 12: Properties of Logarithms
Student Outcomes

Students justify properties of logarithms using the definition and properties already developed.
Lesson Notes
In this lesson, students work exclusively with logarithms base 10; generalization of these results to a generic base 𝑏 will
occur in the next lesson. The opening of this lesson, which echoes homework from Lesson 11, is meant to launch a
consideration of some properties of the common logarithm function. The centerpiece of the lesson is the demonstration
of six basic properties of logarithms theoretically using the properties of exponents instead of numerical approximation
as has been done in prior lessons. In the Problem Set, students will apply these properties to calculating logarithms,
rewriting logarithmic expressions, and solving exponential equations base 10 (A-SSE.A.2, F-LE.A.4).
Scaffolding:
Classwork
Opening Exercise (5 minutes)
Students should work in groups of two or three on this exercise. These exercises
serve to remind students of the β€œmost important property” of logarithms and
prepare them for justifying the properties later in the lesson. Verify that students
are breaking up the logarithm, using the property, and evaluating the logarithm
at known values (e.g., 0.1, 10, 100).
Opening Exercise
Use the approximation π₯𝐨𝐠(𝟐) β‰ˆ 𝟎. πŸ‘πŸŽπŸπŸŽ to approximate the values of each of the
following logarithmic expressions.
a.
π₯𝐨𝐠(𝟐𝟎)
π₯𝐨𝐠(𝟐𝟎) = π₯𝐨𝐠(𝟏𝟎 βˆ™ 𝟐)
= π₯𝐨𝐠(𝟏𝟎) + π₯𝐨𝐠(𝟐)
β‰ˆ 𝟏 + 𝟎. πŸ‘πŸŽπŸ
β‰ˆ 𝟏. πŸ‘πŸŽπŸ
b.
π₯𝐨𝐠(𝟎. 𝟐)
π₯𝐨𝐠(𝟎. 𝟐) = π₯𝐨𝐠(𝟎. 𝟏 βˆ™ 𝟐)
= π₯𝐨𝐠(𝟎. 𝟏) + π₯𝐨𝐠(𝟐)
β‰ˆ βˆ’πŸ + 𝟎. πŸ‘πŸŽπŸπŸŽ
β‰ˆ βˆ’πŸŽ. πŸ”πŸ—πŸ—πŸŽ
 Ask students who are having
trouble with any part of this
exercise, β€œHow is the number in
parentheses related to 2?” Follow
that with the question, β€œSo how
might you find its logarithm given
that you know log(2)?”
 Ask students to factor each number
into powers of 10 and factors of 2
before splitting the factors using
log(π‘₯𝑦) = log(π‘₯) + log(𝑦).
Students still struggling can be
given additional products to break
down before finding the
approximations of their logarithms.
4=2β‹…2
40 = 101 β‹… 2 β‹… 2
0.4 = 10βˆ’1 β‹… 2 β‹… 2
400 = 102 β‹… 2 β‹… 2
0.04 = 10βˆ’2 β‹… 2 β‹… 2
 Advanced students may be
challenged with a more general
version of part (c):
log(2π‘˜ ).
This can be explored by having
students find log(25 ), log(26 ), etc.
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
160
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
c.
π₯𝐨𝐠(πŸπŸ’ )
π₯𝐨𝐠(πŸπŸ’ ) = π₯𝐨𝐠(𝟐 βˆ™ 𝟐 βˆ™ 𝟐 βˆ™ 𝟐)
= π₯𝐨𝐠(𝟐 βˆ™ 𝟐) + π₯𝐨𝐠(𝟐 βˆ™ 𝟐)
= π₯𝐨𝐠(𝟐) + π₯𝐨𝐠(𝟐) + π₯𝐨𝐠(𝟐) + π₯𝐨𝐠(𝟐)
β‰ˆ πŸ’ βˆ™ (𝟎. πŸ‘πŸŽπŸπŸŽ)
β‰ˆ 𝟏. πŸπŸŽπŸ’πŸŽ
Discussion (4 minutes)
Discuss the properties of logarithms used in the Opening Exercises.

In all three parts of the Opening Exercise, we used the important property log(π‘₯𝑦) = log(π‘₯) + log(𝑦).

What are some other properties we used?
οƒΊ

We also used log(10) = 1 and log(0.1) = βˆ’1.
It can be helpful to look further at properties of expressions involving logarithms.
Example (6 minutes)
Recall that, by definition, 𝐿 = log(π‘₯) means 10𝐿 = π‘₯. Consider some possible values of π‘₯ and 𝐿, noting that π‘₯ cannot be
a negative number. What is 𝐿 …

When π‘₯ = 1?
οƒΊ

When π‘₯ = 0?
οƒΊ

𝐿=9
When π‘₯ = 10𝑛 ?
οƒΊ

The logarithm 𝐿 is not defined. There is no exponent of 10 that yields a value of 0.
When π‘₯ = 109 ?
οƒΊ

𝐿=0
𝐿=𝑛
3
When π‘₯ = √10?
οƒΊ
𝐿=
1
3
Exercises 1–6 (15 minutes)
Students should work in groups of two or three on each exercise. The first three should be straightforward in view of the
definition of base 10 logarithms. Exercise 4 may look somewhat odd, but it, too, follows directly from the definition.
Exercises 5 and 6 are more difficult, which is why the hints are supplied. When all properties have been established,
groups might be asked to show their explanations to the rest of the class as time permits.
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
161
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
Exercises
For Exercises 1–6, explain why each statement below is a property of base 𝟏𝟎 logarithms.
1.
Property 1: π₯𝐨𝐠(𝟏) = 𝟎.
Establishing the logarithmic
properties relies on the
exponential laws. Make sure
that students have access to
the exponential laws either
through a poster displayed in
the classroom or through notes
in their notebooks.
𝑳
Because 𝑳 = π₯𝐨𝐠(𝒙) means 𝟏𝟎 = 𝒙, then when 𝒙 = 𝟏, 𝑳 = 𝟎.
2.
Property 2: π₯𝐨𝐠(𝟏𝟎) = 𝟏.
Because 𝑳 = π₯𝐨𝐠(𝒙) means πŸπŸŽπ‘³ = 𝒙, then when 𝒙 = 𝟏𝟎, 𝑳 = 𝟏.
3.
Scaffolding:
Property 3: For all real numbers 𝒓, π₯𝐨𝐠(πŸπŸŽπ’“ ) = 𝒓.
Because 𝑳 = π₯𝐨𝐠(𝒙) means πŸπŸŽπ‘³ = 𝒙, then when 𝒙 = πŸπŸŽπ’“ , 𝑳 = 𝒓.
4.
Property 4: For any 𝒙 > 𝟎, 𝟏𝟎π₯𝐨𝐠(𝒙) = 𝒙.
Scaffolding:
Because 𝑳 = π₯𝐨𝐠(𝒙) means πŸπŸŽπ‘³ = 𝒙, then 𝒙 = 𝟏𝟎π₯𝐨𝐠(𝒙).
MP.3
5.
Property 5: For any positive real numbers 𝒙 and π’š, π₯𝐨𝐠(𝒙 βˆ™ π’š) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š).
Hint: Use an exponent rule as well as property 4.
By the rule 𝒂𝒃 βˆ™ 𝒂𝒄 = 𝒂𝒃+𝒄 , 𝟏𝟎π₯𝐨𝐠(𝒙) βˆ™ 𝟏𝟎π₯𝐨𝐠(π’š) = 𝟏𝟎π₯𝐨𝐠(𝒙)+π₯𝐨𝐠(π’š).
By property 4, 𝟏𝟎π₯𝐨𝐠(𝒙) βˆ™ 𝟏𝟎π₯𝐨𝐠(π’š) = 𝒙 βˆ™ π’š.
Students in groups that
struggle with Exercises 3–6
should be encouraged to check
the property with numerical
values for π‘˜, π‘₯, π‘š, and 𝑛. The
check may suggest an
explanation.
Therefore, 𝒙 βˆ™ π’š = 𝟏𝟎π₯𝐨𝐠(𝒙)+π₯𝐨𝐠(π’š). Again, by property 4, 𝒙 βˆ™ π’š = 𝟏𝟎π₯𝐨𝐠(π’™βˆ™π’š).
Then, 𝟏𝟎π₯𝐨𝐠(π’™βˆ™π’š) = 𝟏𝟎π₯𝐨𝐠(𝒙)+π₯𝐨𝐠(π’š); so, the exponents must be equal, and π₯𝐨𝐠(𝒙 βˆ™ π’š) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š).
6.
Property 6: For any positive real number 𝒙 and any real number 𝒓, π₯𝐨𝐠(𝒙𝒓 ) = 𝒓 βˆ™ π₯𝐨𝐠(𝒙).
Hint: Again, use an exponent rule as well as property πŸ’.
π’Œ
By the rule (𝒂𝒃 )𝒄 = 𝒂𝒃𝒄 , πŸπŸŽπ’Œ π₯𝐨𝐠(𝒙) = (𝟏𝟎π₯𝐨𝐠(𝒙) ) .
𝒓
By property 4, (𝟏𝟎π₯𝐨𝐠(𝒙) ) = 𝒙𝒓 .
𝒓
Therefore, 𝒙𝒓 = πŸπŸŽπ’“ π₯𝐨𝐠(𝒙). Again, by property 4, 𝒙𝒓 = 𝟏𝟎π₯𝐨𝐠(𝒙 ).
𝒓
Then, 𝟏𝟎π₯𝐨𝐠(𝒙 ) = πŸπŸŽπ’“ π₯𝐨𝐠(𝒙); so, the exponents must be equal, and π₯𝐨𝐠(𝒙𝒓 ) = 𝒓 βˆ™ π₯𝐨𝐠(𝒙).
Exercises 7–10 (8 minutes)
These exercises bridge the gap between the abstract properties of logarithms and computational problems like those in
the Problem Set. Allow students to work alone, in pairs, or in small groups as you see fit. Circulate to ensure that
students are applying the properties correctly. Calculators are not needed for these exercises and should not be used.
In Exercises 9 and 10, students need to know that the logarithm is well-defined; that is, for positive real numbers
𝑋 and π‘Œ, if 𝑋 = π‘Œ, then log(𝑋) = log(π‘Œ). This is why we can β€œtake the log of both sides” of an equation in order to bring
down an exponent and solve the equation. In these last two exercises, students need to choose an appropriate base for
the logarithm to apply to solve the equation. Any logarithm will work to solve the equations if applied properly, so
students may find equivalent answers that appear to be different from those listed here.
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
162
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 12
M3
ALGEBRA II
7.
Apply properties of logarithms to rewrite the following expressions as a single logarithm or number.
a.
𝟏
𝟐
π₯𝐨𝐠(πŸπŸ“) + π₯𝐨𝐠(πŸ’)
π₯𝐨𝐠(πŸ“) + π₯𝐨𝐠(πŸ’) = π₯𝐨𝐠(𝟐𝟎)
b.
𝟏
πŸ‘
π₯𝐨𝐠(πŸ–) + π₯𝐨𝐠(πŸπŸ”)
π₯𝐨𝐠(𝟐) + π₯𝐨𝐠(πŸπŸ’ ) = π₯𝐨𝐠(πŸ‘πŸ)
c.
πŸ‘ π₯𝐨𝐠(πŸ“) + π₯𝐨𝐠(𝟎. πŸ–)
π₯𝐨𝐠(πŸπŸπŸ“) + π₯𝐨𝐠(𝟎. πŸ–) = π₯𝐨𝐠(𝟏𝟎𝟎) = 𝟐
8.
Apply properties of logarithms to rewrite each expression as a sum of terms involving numbers, π₯𝐨𝐠(𝒙), and π₯𝐨𝐠(π’š).
a.
π₯𝐨𝐠(πŸ‘π’™πŸ π’šπŸ“ )
π₯𝐨𝐠(πŸ‘) + 𝟐 π₯𝐨𝐠(𝒙) + πŸ“ π₯𝐨𝐠(π’š)
b.
π₯𝐨𝐠(βˆšπ’™πŸ• π’šπŸ‘ )
πŸ•
πŸ‘
π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š)
𝟐
𝟐
9.
In mathematical terminology, logarithms are well defined because if 𝑿 = 𝒀, then π₯𝐨𝐠(𝑿) = π₯𝐨𝐠(𝒀) for 𝑿, 𝒀 > 𝟎.
This means that if you want to solve an equation involving exponents, you can apply a logarithm to both sides of the
equation, just as you can take the square root of both sides when solving a quadratic equation. You do need to be
careful not to take the logarithm of a negative number or zero.
Use the property stated above to solve the following equations.
a.
πŸπŸŽπŸπŸŽπ’™ = 𝟏𝟎𝟎
π₯𝐨𝐠(πŸπŸŽπŸπŸŽπ’™ ) = π₯𝐨𝐠(𝟏𝟎𝟎)
πŸπŸŽπ’™ = 𝟐
𝟏
𝒙=
πŸ“
b.
πŸπŸŽπ’™βˆ’πŸ =
𝟏
𝒙+𝟏
𝟏𝟎
π₯𝐨𝐠(πŸπŸŽπ’™βˆ’πŸ ) = βˆ’π₯𝐨𝐠(πŸπŸŽπ’™+𝟏 )
𝒙 βˆ’ 𝟏 = βˆ’(𝒙 + 𝟏)
πŸπ’™ = 𝟎
𝒙=𝟎
c.
πŸπŸŽπŸŽπŸπ’™ = πŸπŸŽπŸ‘π’™βˆ’πŸ
π₯𝐨𝐠(πŸπŸŽπŸŽπŸπ’™ ) = π₯𝐨𝐠(πŸπŸŽπŸ‘π’™βˆ’πŸ )
πŸπ’™ π₯𝐨𝐠(𝟏𝟎𝟎) = (πŸ‘π’™ βˆ’ 𝟏)
πŸ’π’™ = πŸ‘π’™ βˆ’ 𝟏
𝒙 = βˆ’πŸ
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
163
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
10. Solve the following equations.
πŸπŸŽπ’™ = πŸπŸ•
a.
π₯𝐨𝐠(πŸπŸŽπ’™ ) = π₯𝐨𝐠(πŸπŸ• )
𝒙 = πŸ• π₯𝐨𝐠(𝟐)
πŸπŸŽπ’™
b.
𝟐 +𝟏
= πŸπŸ“
𝟐 +𝟏
π₯𝐨𝐠(πŸπŸŽπ’™
) = π₯𝐨𝐠(πŸπŸ“)
𝟐
𝒙 + 𝟏 = π₯𝐨𝐠(πŸπŸ“)
𝒙 = ±βˆšπ₯𝐨𝐠(πŸπŸ“) βˆ’ 𝟏
πŸ’π’™ = πŸ“πŸ‘
c.
π₯𝐨𝐠(πŸ’π’™ ) = π₯𝐨𝐠(πŸ“πŸ‘ )
𝒙 π₯𝐨𝐠(πŸ’) = πŸ‘ π₯𝐨𝐠(πŸ“)
πŸ‘ π₯𝐨𝐠(πŸ“)
𝒙=
π₯𝐨𝐠(πŸ’)
Closing (2 minutes)
Point out that for each property 1–6, we have established that the property holds, so we can use these properties in our
future work with logarithms. The Lesson Summary might be posted in the classroom for at least the rest of the module.
The Exit Ticket asks the students to show that properties 7 and 8 hold.
Lesson Summary
We have established the following properties for base 𝟏𝟎 logarithms, where 𝒙 and π’š are positive real numbers and
𝒓 is any real number:
1.
π₯𝐨𝐠(𝟏) = 𝟎
2.
π₯𝐨𝐠(𝟏𝟎) = 𝟏
3.
π₯𝐨𝐠(πŸπŸŽπ’“ ) = 𝒓
4.
𝟏𝟎π₯𝐨𝐠(𝒙) = 𝒙
5.
π₯𝐨𝐠(𝒙 βˆ™ π’š) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š)
6.
π₯𝐨𝐠(𝒙𝒓 ) = 𝒓 βˆ™ π₯𝐨𝐠(𝒙)
Additional properties not yet established are the following:
1.
2.
𝟏
𝒙
𝒙
π₯𝐨𝐠 ( ) = π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(π’š)
π’š
π₯𝐨𝐠 ( ) = βˆ’π₯𝐨𝐠(𝒙)
Also, logarithms are well defined, meaning that for 𝑿, 𝒀 > 𝟎, if 𝑿 = 𝒀, then π₯𝐨𝐠(𝑿) = π₯𝐨𝐠(𝒀).
Exit Ticket (5 minutes)
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
164
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
Name
Date
Lesson 12: Properties of Logarithms
Exit Ticket
1.
State as many of the six properties of logarithms as you can.
2.
Use the properties of logarithms to show that log ( ) = βˆ’log(π‘₯) for all π‘₯ > 0.
3.
Use the properties of logarithms to show that log ( ) = log(π‘₯) βˆ’ log(𝑦) for π‘₯ > 0 and 𝑦 > 0.
1
π‘₯
π‘₯
𝑦
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
165
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
Exit Ticket Sample Solutions
1.
State as many of the six properties of logarithms as you can.
π₯𝐨𝐠(𝟏) = 𝟎
π₯𝐨𝐠(𝟏𝟎) = 𝟏
π₯𝐨𝐠(πŸπŸŽπ’“ ) = 𝒓
𝟏𝟎π₯𝐨𝐠(𝒙) = 𝒙
π₯𝐨𝐠(𝒙 β‹… π’š) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š)
π₯𝐨𝐠(𝒙𝒓 ) = 𝒓 β‹… π₯𝐨𝐠(𝒙)
2.
𝟏
𝒙
Use the properties of logarithms to show that π₯𝐨𝐠 ( ) = βˆ’π₯𝐨𝐠(𝒙) for 𝒙 > 𝟎.
By property 6, π₯𝐨𝐠(π’™π’Œ ) = π’Œ βˆ™ π₯𝐨𝐠(𝒙).
𝟏
𝒙
Let π’Œ = βˆ’πŸ, then for 𝒙 > 𝟎, π₯𝐨𝐠(π’™βˆ’πŸ ) = (βˆ’πŸ) βˆ™ π₯𝐨𝐠(𝒙), which is equivalent to π₯𝐨𝐠 ( ) = βˆ’π₯𝐨𝐠(𝒙).
𝟏
𝒙
Thus, for any 𝒙 > 𝟎, π₯𝐨𝐠 ( ) = βˆ’π₯𝐨𝐠(𝒙).
3.
𝒙
π’š
Use the properties of logarithms to show that π₯𝐨𝐠 ( ) = π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(π’š) for 𝒙 > 𝟎 and π’š > 𝟎.
By property 5, π₯𝐨𝐠(𝒙 βˆ™ π’š) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š).
By Problem 2 above, for π’š > 𝟎, π₯𝐨𝐠(π’šβˆ’πŸ ) = (βˆ’πŸ) βˆ™ π₯𝐨𝐠(π’š).
Therefore,
𝒙
𝟏
π₯𝐨𝐠 ( ) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠 ( )
π’š
π’š
= π₯𝐨𝐠(𝒙) + (βˆ’πŸ)π₯𝐨𝐠(π’š)
= π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(π’š).
𝒙
π’š
Thus, for any 𝒙 > 𝟎 and π’š > 𝟎, π₯𝐨𝐠 ( ) = π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(π’š).
Problem Set Sample Solutions
Problems 1–7 give students an opportunity to practice using the properties they have established in this lesson, and in
the remaining problems, students apply base 10 logarithms to solve simple exponential equations.
1.
Use the approximate logarithm values below to estimate each of the following logarithms. Indicate which
properties you used.
a.
π₯𝐨𝐠(𝟐) = 𝟎. πŸ‘πŸŽπŸπŸŽ
π₯𝐨𝐠(πŸ‘) = 𝟎. πŸ’πŸ•πŸ•πŸ
π₯𝐨𝐠(πŸ“) = 𝟎. πŸ”πŸ—πŸ—πŸŽ
π₯𝐨𝐠(πŸ•) = 𝟎. πŸ–πŸ’πŸ“πŸ
π₯𝐨𝐠(πŸ”)
Using property 5,
π₯𝐨𝐠(πŸ”) = π₯𝐨𝐠(πŸ‘) + π₯𝐨𝐠(𝟐) β‰ˆ 𝟎. πŸ•πŸ•πŸ–πŸ.
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
166
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
b.
π₯𝐨𝐠(πŸπŸ“)
Using property 5,
π₯𝐨𝐠(πŸπŸ“) = π₯𝐨𝐠(πŸ‘) + π₯𝐨𝐠(πŸ“) β‰ˆ 𝟏. πŸπŸ•πŸ”πŸ.
c.
π₯𝐨𝐠(𝟏𝟐)
Using properties 5 and 6,
π₯𝐨𝐠(𝟏𝟐) = π₯𝐨𝐠(πŸ‘) + π₯𝐨𝐠(𝟐𝟐 ) = π₯𝐨𝐠(πŸ‘) + 𝟐 π₯𝐨𝐠(𝟐) β‰ˆ 𝟏. πŸŽπŸ•πŸ—πŸ.
d.
π₯𝐨𝐠(πŸπŸŽπŸ• )
Using property 3,
π₯𝐨𝐠(πŸπŸŽπŸ• ) = πŸ•.
e.
𝟏
πŸ“
π₯𝐨𝐠 ( )
Using property 7,
𝟏
π₯𝐨𝐠 ( ) = βˆ’π₯𝐨𝐠(πŸ“) β‰ˆ βˆ’πŸŽ. πŸ”πŸ—πŸ—πŸŽ.
πŸ“
f.
πŸ‘
πŸ•
π₯𝐨𝐠 ( )
Using property 8,
πŸ‘
π₯𝐨𝐠 ( ) = π₯𝐨𝐠(πŸ‘) βˆ’ π₯𝐨𝐠(πŸ•) β‰ˆ βˆ’πŸŽ. πŸ‘πŸ”πŸ–.
πŸ•
g.
πŸ’
π₯𝐨𝐠(√𝟐)
Using property 6,
𝟏
πŸ’
π₯𝐨𝐠(√𝟐) = π₯𝐨𝐠 (πŸπŸ’ ) =
2.
𝟏
π₯𝐨𝐠(𝟐) β‰ˆ 𝟎. πŸŽπŸ•πŸ“πŸ‘.
πŸ’
Let π₯𝐨𝐠(𝑿) = 𝒓, π₯𝐨𝐠(𝒀) = 𝒔, and π₯𝐨𝐠(𝒁) = 𝒕. Express each of the following in terms of 𝒓, 𝒔, and 𝒕.
a.
𝑿
𝒀
b.
π₯𝐨𝐠 ( )
𝒔+𝒕
π’“βˆ’π’”
c.
π₯𝐨𝐠(𝑿𝒓 )
d.
π’“πŸ
e.
π₯𝐨𝐠(𝒀𝒁)
πŸ‘
π₯𝐨𝐠(βˆšπ’)
𝒕
πŸ‘
πŸ’
f.
𝒀
π₯𝐨𝐠 ( √ )
𝒁
π₯𝐨𝐠(π‘Ώπ’€πŸ π’πŸ‘ )
𝒓 + πŸπ’” + πŸ‘π’•
π’”βˆ’π’•
πŸ’
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
167
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 12
M3
ALGEBRA II
3.
Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
a.
π₯𝐨𝐠 (
πŸπŸ‘
πŸ“
) + π₯𝐨𝐠 ( )
πŸ“
πŸ’
πŸπŸ‘
π₯𝐨𝐠 ( )
πŸ’
b.
πŸ“
πŸ”
𝟐
πŸ‘
π₯𝐨𝐠 ( ) βˆ’ π₯𝐨𝐠 ( )
πŸ“
π₯𝐨𝐠 ( )
πŸ’
c.
𝟏
𝟐
π₯𝐨𝐠(πŸπŸ”) + π₯𝐨𝐠(πŸ‘) + π₯𝐨𝐠 (
𝟏
πŸ’
)
π₯𝐨𝐠(πŸ‘)
4.
Use the properties of logarithms to rewrite each expression in an equivalent form containing a single logarithm.
a.
𝟏
𝟏
π₯𝐨𝐠(βˆšπ’™) + π₯𝐨𝐠 ( ) + 𝟐 π₯𝐨𝐠(𝒙)
𝟐
𝒙
π₯𝐨𝐠(𝐱 𝟐 )
b.
πŸ“
π₯𝐨𝐠( πŸ“βˆšπ’™) + π₯𝐨𝐠(βˆšπ’™πŸ’ )
π₯𝐨𝐠(𝒙)
c.
𝟏
𝟐
π₯𝐨𝐠(𝒙) + 𝟐 π₯𝐨𝐠(π’š) βˆ’ π₯𝐨𝐠(𝒛)
π₯𝐨𝐠 (
d.
𝟏
πŸ‘
π’™π’šπŸ
βˆšπ’›
(π₯𝐨𝐠(𝒙) βˆ’ πŸ‘ π₯𝐨𝐠(π’š) + π₯𝐨𝐠(𝒛))
πŸ‘
π₯𝐨𝐠 ( √
e.
)
𝒙𝒛
)
π’šπŸ‘
𝟐(π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(πŸ‘π’š)) + πŸ‘(π₯𝐨𝐠(𝒛) βˆ’ 𝟐 π₯𝐨𝐠(𝒙))
𝒙 𝟐
𝒛 πŸ‘
π’›πŸ‘
π₯𝐨𝐠 (( ) ) + π₯𝐨𝐠 (( 𝟐 ) ) = π₯𝐨𝐠 ( 𝟐 πŸ’ )
πŸ‘π’š
𝒙
πŸ—π’š 𝒙
5.
Use properties of logarithms to rewrite the following expressions in an equivalent form containing only π₯𝐨𝐠(𝒙),
π₯𝐨𝐠(π’š), π₯𝐨𝐠(𝒛), and numbers.
a.
πŸ‘π’™πŸ π’šπŸ’
)
βˆšπ’›
π₯𝐨𝐠 (
π₯𝐨𝐠(πŸ‘) + 𝟐 π₯𝐨𝐠(𝒙) + πŸ’ π₯𝐨𝐠(π’š) βˆ’
𝟏
π₯𝐨𝐠(𝒛)
𝟐
πŸ‘
b.
π₯𝐨𝐠 (
πŸ’πŸ βˆšπ’™π’šπŸ•
π’™πŸ 𝒛
)
πŸ“
πŸ•
π₯𝐨𝐠(πŸ’πŸ) βˆ’ π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š) βˆ’ π₯𝐨𝐠(𝒛)
πŸ‘
πŸ‘
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
168
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
c.
πŸπŸŽπŸŽπ’™πŸ
)
π’šπŸ‘
π₯𝐨𝐠 (
𝟐 + 𝟐 π₯𝐨𝐠(𝒙) βˆ’ πŸ‘ π₯𝐨𝐠(π’š)
d.
π’™πŸ‘ π’šπŸ
)
πŸπŸŽπ’›
π₯𝐨𝐠 (√
𝟏
(πŸ‘ π₯𝐨𝐠(𝒙) + 𝟐 π₯𝐨𝐠(π’š) βˆ’ 𝟏 βˆ’ π₯𝐨𝐠(𝒛))
𝟐
e.
π₯𝐨𝐠 (
𝟏
)
πŸπŸŽπ’™πŸ 𝒛
βˆ’πŸ βˆ’ 𝟐 π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(𝒛)
6.
𝟏
𝒙
Express π₯𝐨𝐠 ( βˆ’
𝟏
𝟏
𝟏
) + (π₯𝐨𝐠 ( ) βˆ’ π₯𝐨𝐠 (
)) as a single logarithm for positive numbers 𝒙.
𝒙+𝟏
𝒙
𝒙+𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏
π₯𝐨𝐠 ( βˆ’
) + (π₯𝐨𝐠 ( ) βˆ’ π₯𝐨𝐠 (
)) = π₯𝐨𝐠 (
) + π₯𝐨𝐠 ( ) βˆ’ π₯𝐨𝐠 (
)
𝒙 𝒙+𝟏
𝒙
𝒙+𝟏
𝒙(𝒙 + 𝟏)
𝒙
𝒙+𝟏
= βˆ’π₯𝐨𝐠(𝒙(𝒙 + 𝟏)) βˆ’ π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(𝒙 + 𝟏)
= βˆ’π₯𝐨𝐠(𝒙) βˆ’ π₯𝐨𝐠(𝒙 + 𝟏) βˆ’ π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(𝒙 + 𝟏)
= βˆ’πŸ π₯𝐨𝐠(𝒙)
7.
Show that π₯𝐨𝐠(𝒙 + βˆšπ’™πŸ βˆ’ 𝟏) + π₯𝐨𝐠(𝒙 βˆ’ βˆšπ’™πŸ βˆ’ 𝟏) = 𝟎 for 𝒙 β‰₯ 𝟏.
π₯𝐨𝐠 (𝒙 + βˆšπ’™πŸ βˆ’ 𝟏) + π₯𝐨𝐠 (𝒙 βˆ’ βˆšπ’™πŸ βˆ’ 𝟏) = π₯𝐨𝐠 ((𝒙 + βˆšπ’™πŸ βˆ’ 𝟏) (𝒙 βˆ’ βˆšπ’™πŸ βˆ’ 𝟏))
𝟐
= π₯𝐨𝐠 (π’™πŸ βˆ’ (βˆšπ’™πŸ βˆ’ 𝟏) )
= π₯𝐨𝐠(π’™πŸ βˆ’ π’™πŸ + 𝟏)
= π₯𝐨𝐠(𝟏)
=𝟎
8.
If π’™π’š = πŸπŸŽπŸ‘.πŸ”πŸ•, find the value of π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š).
π’™π’š = πŸπŸŽπŸ‘.πŸ”πŸ•
πŸ‘. πŸ”πŸ• = π₯𝐨𝐠(π’™π’š)
π₯𝐨𝐠(π’™π’š) = πŸ‘. πŸ”πŸ•
π₯𝐨𝐠(𝒙) + π₯𝐨𝐠(π’š) = πŸ‘. πŸ”πŸ•
9.
Solve the following exponential equations by taking the logarithm base 𝟏𝟎 of both sides. Leave your answers stated
in terms of logarithmic expressions.
a.
𝟐
πŸπŸŽπ’™ = πŸ‘πŸπŸŽ
𝟐
π₯𝐨𝐠(πŸπŸŽπ’™ ) = π₯𝐨𝐠(πŸ‘πŸπŸŽ)
π’™πŸ = π₯𝐨𝐠(πŸ‘πŸπŸŽ)
𝒙 = ±βˆšπ₯𝐨𝐠(πŸ‘πŸπŸŽ)
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
169
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
b.
𝒙
πŸπŸŽπŸ– = πŸ‘πŸŽπŸŽ
𝒙
π₯𝐨𝐠 (πŸπŸŽπŸ– ) = π₯𝐨𝐠(πŸ‘πŸŽπŸŽ)
𝒙
= π₯𝐨𝐠(𝟏𝟎𝟐 βˆ™ πŸ‘)
πŸ–
𝒙
= 𝟐 + π₯𝐨𝐠(πŸ‘)
πŸ–
𝒙 = πŸπŸ” + πŸ– π₯𝐨𝐠(πŸ‘)
c.
πŸπŸŽπŸ‘π’™ = πŸ’πŸŽπŸŽ
π₯𝐨𝐠(πŸπŸŽπŸ‘π’™ ) = π₯𝐨𝐠(πŸ’πŸŽπŸŽ)
πŸ‘π’™ β‹… π₯𝐨𝐠(𝟏𝟎) = π₯𝐨𝐠(𝟏𝟎𝟐 βˆ™ πŸ’)
πŸ‘π’™ β‹… 𝟏 = 𝟐 + π₯𝐨𝐠(πŸ’)
𝟏
𝒙 = (𝟐 + π₯𝐨𝐠(πŸ’))
πŸ‘
d.
πŸ“πŸπ’™ = 𝟐𝟎𝟎
π₯𝐨𝐠(πŸ“πŸπ’™ ) = π₯𝐨𝐠(𝟐𝟎𝟎)
πŸπ’™ β‹… π₯𝐨𝐠(πŸ“) = π₯𝐨𝐠(𝟏𝟎𝟎) + π₯𝐨𝐠(𝟐)
𝟐 + π₯𝐨𝐠(𝟐)
πŸπ’™ =
π₯𝐨𝐠(πŸ“)
𝒙=
e.
𝟐 + π₯𝐨𝐠(𝟐)
𝟐 π₯𝐨𝐠(πŸ“)
πŸ‘π± = πŸ•βˆ’πŸ‘π±+𝟐
π₯𝐨𝐠(πŸ‘π’™ ) = π₯𝐨𝐠 (πŸ•βˆ’πŸ‘π’™+𝟐 )
𝒙 π₯𝐨𝐠(πŸ‘) = (βˆ’πŸ‘π’™ + 𝟐)π₯𝐨𝐠(πŸ•)
𝒙 π₯𝐨𝐠(πŸ‘) + πŸ‘π’™ π₯𝐨𝐠(πŸ•) = 𝟐 π₯𝐨𝐠(πŸ•)
𝒙(π₯𝐨𝐠(πŸ‘) + πŸ‘ π₯𝐨𝐠(πŸ•)) = 𝟐 π₯𝐨𝐠(πŸ•)
𝒙=
𝟐 π₯𝐨𝐠(πŸ•)
π₯𝐨𝐠(πŸ’πŸ—)
π₯𝐨𝐠(πŸ’πŸ—)
=
=
π₯𝐨𝐠(πŸ‘) + πŸ‘ π₯𝐨𝐠(πŸ•) π₯𝐨𝐠(πŸ‘) + π₯𝐨𝐠(πŸ‘πŸ’πŸ‘) π₯𝐨𝐠(πŸπŸŽπŸπŸ—)
(Any of the three equivalent forms given above are acceptable answers.)
10. Solve the following exponential equations.
a.
πŸπŸŽπ’™ = πŸ‘
𝒙 = π₯𝐨𝐠(πŸ‘)
b.
πŸπŸŽπ’š = πŸ‘πŸŽ
π’š = π₯𝐨𝐠(πŸ‘πŸŽ)
c.
πŸπŸŽπ’› = πŸ‘πŸŽπŸŽ
𝐳 = π₯𝐨𝐠(πŸ‘πŸŽπŸŽ)
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
170
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
d.
Use the properties of logarithms to justify why 𝒙, π’š, and 𝒛 form an arithmetic sequence whose constant
difference is 𝟏.
Since π’š = π₯𝐨𝐠(πŸ‘πŸŽ), π’š = π₯𝐨𝐠(𝟏𝟎 βˆ™ πŸ‘) = 𝟏 + π₯𝐨𝐠(𝟏𝟎) = 𝟏 + 𝒙.
Similarly, 𝒛 = 𝟐 + π₯𝐨𝐠(πŸ‘) = 𝟐 + 𝒙.
Thus, the sequence 𝒙, π’š, 𝒛 is the sequence π₯𝐨𝐠(πŸ‘), 𝟏 + π₯𝐨𝐠(πŸ‘), 𝟐 + π₯𝐨𝐠(πŸ‘), and these numbers form an
arithmetic sequence whose first term is π₯𝐨𝐠(πŸ‘) with a constant difference of 𝟏.
11. Without using a calculator, explain why the solution to each equation must be a real number between 𝟏 and 𝟐.
a.
πŸπŸπ’™ = 𝟏𝟐
𝟏𝟐 is greater than 𝟏𝟏𝟏 and less than 𝟏𝟏𝟐 , so the solution is between 𝟏 and 𝟐.
b.
πŸπŸπ’™ = πŸ‘πŸŽ
πŸ‘πŸŽ is greater than 𝟐𝟏𝟏 and less than 𝟐𝟏𝟐 , so the solution is between 𝟏 and 𝟐.
c.
πŸπŸŽπŸŽπ’™ = 𝟐𝟎𝟎𝟎
𝟏𝟎𝟎𝟐 = 𝟏𝟎𝟎𝟎𝟎, and 𝟐𝟎𝟎𝟎 is less than that, so the solution is between 𝟏 and 𝟐.
d.
(
𝟏 𝒙
) = 𝟎. 𝟎𝟏
𝟏𝟏
𝟏
𝟏𝟎𝟎
e.
is between
𝟐
πŸ‘
𝒙
𝟐
πŸ‘
𝟐
( ) =
( ) =
f.
𝟏
𝟏𝟏
and
𝟏
𝟏𝟐𝟏
, so the solution is between 𝟏 and 𝟐.
𝟏
𝟐
𝟏
𝟐
πŸ’
πŸ’
, and is between and , so the solution is between 𝟏 and 𝟐.
πŸ—
𝟐
πŸ‘
πŸ—
πŸ—πŸ—π’™ = πŸ—πŸŽπŸŽπŸŽ
πŸ—πŸ—πŸ = πŸ—πŸ–πŸŽπŸ. Since πŸ—πŸŽπŸŽπŸŽ is less than πŸ—πŸ–πŸŽπŸ and greater than πŸ—πŸ—, the solution is between 𝟏 and 𝟐.
12. Express the exact solution to each equation as a base 𝟏𝟎 logarithm. Use a calculator to approximate the solution to
the nearest 𝟏𝟎𝟎𝟎th.
a.
πŸπŸπ’™ = 𝟏𝟐
π₯𝐨𝐠(πŸπŸπ’™ ) = π₯𝐨𝐠(𝟏𝟐)
𝒙 π₯𝐨𝐠(𝟏𝟏) = π₯𝐨𝐠(𝟏𝟐)
π₯𝐨𝐠(𝟏𝟐)
𝒙=
π₯𝐨𝐠(𝟏𝟏)
𝒙 β‰ˆ 𝟏. πŸŽπŸ‘πŸ”
b.
πŸπŸπ’™ = πŸ‘πŸŽ
𝒙=
π₯𝐨𝐠(πŸ‘πŸŽ)
π₯𝐨𝐠(𝟐𝟏)
𝒙 β‰ˆ 𝟏. πŸπŸπŸ•
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
171
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
c.
πŸπŸŽπŸŽπ’™ = 𝟐𝟎𝟎𝟎
𝒙=
π₯𝐨𝐠(𝟐𝟎𝟎𝟎)
π₯𝐨𝐠(𝟏𝟎𝟎)
𝒙 β‰ˆ 𝟏. πŸ”πŸ“πŸ
d.
(
𝟏 𝒙
) = 𝟎. 𝟎𝟏
𝟏𝟏
𝟐
𝒙=βˆ’
π₯𝐨𝐠 (
𝟏
)
𝟏𝟏
𝒙 β‰ˆ 𝟏. πŸ—πŸπŸ
e.
𝟐
πŸ‘
𝒙
( ) =
𝟏
𝟐
𝟏
π₯𝐨𝐠 ( )
𝟐
𝟐
π₯𝐨𝐠 ( )
πŸ‘
𝒙 β‰ˆ 𝟏. πŸ•πŸπŸŽ
𝒙=
f.
πŸ—πŸ—π’™ = πŸ—πŸŽπŸŽπŸŽ
𝒙=
π₯𝐨𝐠(πŸ—πŸŽπŸŽπŸŽ)
π₯𝐨𝐠(πŸ—πŸ—)
𝒙 β‰ˆ 𝟏. πŸ—πŸ–πŸ
13. Show that the value of 𝒙 that satisfies the equation πŸπŸŽπ’™ = πŸ‘ βˆ™ πŸπŸŽπ’ is π₯𝐨𝐠(πŸ‘) + 𝒏.
Substituting 𝒙 = π₯𝐨𝐠(πŸ‘) + 𝒏 into πŸπŸŽπ’™ and using properties of exponents and logarithms gives
πŸπŸŽπ’™ = 𝟏𝟎π₯𝐨𝐠(πŸ‘)+ 𝒏
= 𝟏𝟎π₯𝐨𝐠(πŸ‘) πŸπŸŽπ’
= πŸ‘ β‹… πŸπŸŽπ’ .
Thus, 𝒙 = π₯𝐨𝐠(πŸ‘) + 𝒏 is a solution to the equations πŸπŸŽπ’™ = πŸ‘ β‹… πŸπŸŽπ’ .
14. Solve each equation. If there is no solution, explain why.
a.
πŸ‘ βˆ™ πŸ“π’™ = 𝟐𝟏
πŸ“π’™ = πŸ•
π₯𝐨𝐠(πŸ“π’™ ) = π₯𝐨𝐠(πŸ•)
𝒙 π₯𝐨𝐠(πŸ“) = π₯𝐨𝐠(πŸ•)
𝒙=
b.
π₯𝐨𝐠(πŸ•)
π₯𝐨𝐠(πŸ“)
πŸπŸŽπ’™βˆ’πŸ‘ = πŸπŸ“
π₯𝐨𝐠(πŸπŸŽπ’™βˆ’πŸ‘ ) = π₯𝐨𝐠(πŸπŸ“)
𝒙 = πŸ‘ + π₯𝐨𝐠(πŸπŸ“)
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
172
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
c.
πŸπŸŽπ’™ + πŸπŸŽπ’™+𝟏 = 𝟏𝟏
πŸπŸŽπ’™ (𝟏 + 𝟏𝟎) = 𝟏𝟏
πŸπŸŽπ’™ = 𝟏
𝒙=𝟎
d.
πŸ– βˆ’ πŸπ’™ = 𝟏𝟎
βˆ’πŸπ’™ = 𝟐
πŸπ’™ = βˆ’πŸ
There is no solution because πŸπ’™ is always positive for all real 𝒙
15. Solve the following equation for 𝒏: 𝑨 = 𝑷(𝟏 + 𝒓)𝒏 .
𝑨 = 𝑷(𝟏 + 𝒓)𝒏
π₯𝐨𝐠(𝑨) = π₯𝐨𝐠[(𝑷(𝟏 + 𝒓)𝒏 ]
π₯𝐨𝐠(𝑨) = π₯𝐨𝐠(𝑷) + π₯𝐨𝐠[(𝟏 + 𝒓)𝒏 ]
π₯𝐨𝐠(𝑨) βˆ’ π₯𝐨𝐠(𝑷) = 𝒏 π₯𝐨𝐠(𝟏 + 𝒓)
π₯𝐨𝐠(𝑨) βˆ’ π₯𝐨𝐠(𝑷)
π₯𝐨𝐠(𝟏 + 𝒓)
𝑨
π₯𝐨𝐠 ( )
𝑷
𝒏=
π₯𝐨𝐠(𝟏 + 𝒓)
𝒏=
The remaining questions establish a property for the logarithm of a sum. Although this is an application of the logarithm
of a product, the formula does have some applications in information theory and can help with the calculations
necessary to use tables of logarithms, which will be explored further in Lesson 15.
16. In this exercise, we will establish a formula for the logarithm of a sum. Let 𝑳 = π₯𝐨𝐠(𝒙 + π’š), where 𝒙, π’š > 𝟎.
a.
π’š
𝒙
Show π₯𝐨𝐠(𝒙) + π₯𝐨𝐠 (𝟏 + ) = 𝑳. State as a property of logarithms after showing this is a true statement.
π’š
π’š
π₯𝐨𝐠(𝒙) + π₯𝐨𝐠 (𝟏 + ) = π₯𝐨𝐠 (𝒙 (𝟏 + ))
𝒙
𝒙
π’™π’š
= π₯𝐨𝐠 (𝒙 + )
𝒙
= π₯𝐨𝐠(𝒙 + π’š)
=𝑳
π’š
𝒙
Therefore, for 𝒙, π’š > 𝟎, π₯𝐨𝐠(𝒙 + π’š) = π₯𝐨𝐠(𝒙) + π₯𝐨𝐠 (𝟏 + ).
b.
Use part (a) and the fact that π₯𝐨𝐠(𝟏𝟎𝟎) = 𝟐 to rewrite π₯𝐨𝐠(πŸ‘πŸ”πŸ“) as a sum.
π₯𝐨𝐠(πŸ‘πŸ”πŸ“) = π₯𝐨𝐠(𝟏𝟎𝟎 + πŸπŸ”πŸ“)
πŸπŸ”πŸ“
)
𝟏𝟎𝟎
= π₯𝐨𝐠(𝟏𝟎𝟎) + π₯𝐨𝐠(πŸ‘. πŸ”πŸ“)
= π₯𝐨𝐠(𝟏𝟎𝟎) + π₯𝐨𝐠 (𝟏 +
= 𝟐 + π₯𝐨𝐠(πŸ‘. πŸ”πŸ“)
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
173
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 12
NYS COMMON CORE MATHEMATICS CURRICULUM
M3
ALGEBRA II
c.
Rewrite πŸ‘πŸ”πŸ“ in scientific notation, and use properties of logarithms to express π₯𝐨𝐠(πŸ‘πŸ”πŸ“) as a sum of an
integer and a logarithm of a number between 𝟎 and 𝟏𝟎.
πŸ‘πŸ”πŸ“ = πŸ‘. πŸ”πŸ“ × πŸπŸŽπŸ
π₯𝐨𝐠(πŸ‘πŸ”πŸ“) = π₯𝐨𝐠(πŸ‘. πŸ”πŸ“ × πŸπŸŽπŸ )
= π₯𝐨𝐠(πŸ‘. πŸ”πŸ“) + π₯𝐨𝐠(𝟏𝟎𝟐 )
= 𝟐 + π₯𝐨𝐠(πŸ‘. πŸ”πŸ“)
d.
What do you notice about your answers to (b) and (c)?
Separating πŸ‘πŸ”πŸ“ into 𝟏𝟎𝟎 + πŸπŸ”πŸ“ and using the formula for the logarithm of a sum is the same as writing πŸ‘πŸ”πŸ“
in scientific notation and using formula for the logarithm of a product.
e.
Find two integers that are upper and lower estimates of π₯𝐨𝐠(πŸ‘πŸ”πŸ“).
Since 𝟏 < πŸ‘. πŸ”πŸ“ < 𝟏𝟎, we know that 𝟎 < π₯𝐨𝐠(πŸ‘. πŸ”πŸ“) < 𝟏. This tells us that 𝟐 < 𝟐 + π₯𝐨𝐠(πŸ‘. πŸ”πŸ“) < πŸ‘, so 𝟐 <
π₯𝐨𝐠(πŸ‘πŸ”πŸ“) < πŸ‘.
Lesson 12:
Date:
Properties of Logarithms
7/29/17
© 2014 Common Core, Inc. Some rights reserved. commoncore.org
174
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.