CompSci 210 - Semester One 2017 π¨ CompSci 210 - Semester One 2017 π© π©π¨ π© + π©π¨ π¨ π© 0 0 0 1 1 0 1 1 π©π¨ π΅ + π΅π΄ CompSci 210 - Semester One 2017 π© + π©π¨ π¨ π© π©π¨ 0 0 0 0 1 0 1 0 0 1 1 1 π΅ + π΅π΄ CompSci 210 - Semester One 2017 π© + π©π¨ π¨ π© π©π¨ π© + π©π¨ 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 π΅ + π΅π΄ CompSci 210 - Semester One 2017 π¨ π© π©π¨ π© + π©π¨ 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 π΅ + π΅π΄ CompSci 210 - Semester One 2017 A. B. C. CompSci 210 - Semester One 2017 β’ β’ β’ NOT AND OR β’ NAND β’ NOR β’ XOR π΄ π΄ π΄ π΄π΅ π΅ π΄ π΄+π΅ π΅ π΄ π΅ π΄π΅ π΄ π΄+π΅ π΅ π΄ π΄β¨π΅ π΅ CompSci 210 - Semester One 2017 β’ β’ ALL ANY π΄ π΅ πΆ π΄ π΅ πΆ π΄π΅πΆ π΄+π΅+πΆ NAND Gate NOT-AND X W X Z Z Y Y W = _ X.Y ____ Z = W = X.Y X 0 0 1 1 Y 0 1 0 1 NAND ____ Z = X.Y nand(Z,X,Y) Z 1 1 1 0 9 NOR Gate NOR NOT-OR X W Y X Z Y _______ W = X + Y _ Z Z = (X + Y) nor(Z,X,Y) _______ Z = W = (X + Y) X 0 0 1 1 Y 0 1 0 1 Z 1 0 0 0 10 β’ x y CompSci 210 - Semester One 2017 β’ x y CompSci 210 - Semester One 2017 π₯+π¦ β’ x y π₯+π¦ π¦ CompSci 210 - Semester One 2017 β’ x y π₯+π¦ π₯+π¦ π¦ π¦ CompSci 210 - Semester One 2017 β’ x y CompSci 210 - Semester One 2017 β’ x π₯ y π¦ CompSci 210 - Semester One 2017 β’ x π₯ y π¦ CompSci 210 - Semester One 2017 π₯β π¦ β’ x y CompSci 210 - Semester One 2017 π₯ π₯β π¦ π¦ π₯β π¦ β’ CompSci 210 - Semester One 2017 β’ π₯ x y CompSci 210 - Semester One 2017 π¦ β’ π₯ x y CompSci 210 - Semester One 2017 β’ π₯+π¦ x y CompSci 210 - Semester One 2017 β’ CompSci 210 - Semester One 2017 β’ π₯ CompSci 210 - Semester One 2017 π¦ π₯ β’ π₯+π¦ CompSci 210 - Semester One 2017 β’ π₯+π¦ CompSci 210 - Semester One 2017 β’ π₯+π¦ β CompSci 210 - Semester One 2017 β’ π₯+π¦ β π₯ CompSci 210 - Semester One 2017 β’ CompSci 210 - Semester One 2017 CompSci 210 - Semester One 2017 π¨ CompSci 210 - Semester One 2017 π© 0 0 0 1 1 0 1 1 π¨ CompSci 210 - Semester One 2017 π© π¨ 0 0 1 0 1 1 1 0 0 1 1 0 π¨ CompSci 210 - Semester One 2017 π© π¨ π¨π© 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 0 π¨ CompSci 210 - Semester One 2017 π© π¨ π¨π© π¨ + π¨π© 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 π¨ CompSci 210 - Semester One 2017 π© π¨ π¨π© π¨ + π¨π© 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 β’ CompSci 210 - Semester One 2017 π¨ π© πͺ 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 CompSci 210 - Semester One 2017 π¨ π© πͺ πͺ 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 CompSci 210 - Semester One 2017 π¨ π© πͺ π© πͺ 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 CompSci 210 - Semester One 2017 π¨ π© πͺ π© πͺ π¨π©πͺ 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0 CompSci 210 - Semester One 2017 π¨ π© πͺ π© πͺ π¨π©πͺ πͺπ© 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 CompSci 210 - Semester One 2017 π¨ π© πͺ π© πͺ π¨π©πͺ πͺπ© π©π¨ 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 CompSci 210 - Semester One 2017 π¨ π© πͺ π© πͺ π¨π©πͺ πͺπ© π©π¨ π¨π©πͺ + πͺπ© + π©π¨ 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 CompSci 210 - Semester One 2017 π¨ π© πͺ π© πͺ π¨π©πͺ πͺπ© π©π¨ π¨π©πͺ + πͺπ© + π©π¨ 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 CompSci 210 - Semester One 2017 β’ CompSci 210 - Semester One 2017 De Morganβs Theorem β’ NOT all variables β’ Change . to + and + to . β’ NOT the result_______ ______ _______ __ __ (X . Y) = (X + Y) = X + Y __ __ β’ -------------------------------------------__________ (X + Y) = __ __ __ X . Y __ X+Y= 46 β’ x y CompSci 210 - Semester One 2017 π₯ π₯β π¦ π¦ π₯β π¦ β’ x y CompSci 210 - Semester One 2017 π₯ π₯β π¦ π¦ π₯+π¦ β’ x y CompSci 210 - Semester One 2017 π₯ π₯β π¦ π¦ π₯+π¦ Latches β’ The SR Latch (NOR) β Consider the following circuit R Q R R Q Q S S Q Q Q S Symbol Circuit R 0 0 1 1 S 1 0 1 Qn+1 Qn (HOLD) 1 0 ? Function Table n+1 represents output at some future time n represents current output. 50 Latches β’ The SR Latch(NAND) β NAND Form produces similar result from inverted inputs R Q R R Q Q S Q S S Q Q Circuit Symbol R 0 0 1 1 S Qn+1 0 ? 1 0 0 1 1 Qn Function Table You ought to be able to figure this one out yourself! 51
© Copyright 2026 Paperzz