MAP 2302 Differential Equations Part II Summary 2- Higher Order Differential Equations Sanchez Linear combination of functions. A function y=f(x) is said to be a linear combination of the functions y=g(x) and y=h(x), if there exist constants c and d such that f(x)=cg(x) + dh(x) Linearly independent set of functions: a set of functions are said to be linearly independent if none of them can be expressed as a linear combination of the others. That is, c1 f1 ( x) c2 f 2 ( x) c3 f 3 ( x) ... ck f k1 ( x) 0 then c1 c2 c3 c4 ... ck 0 Wronskian of a set of functions. The Wronskian of the set of functions f1(x), f2(x), f2(x),…, fn(x) is defined by the determinant f1 ( x) f 2 ( x) ... f n ( x) f1 ( x) f 2 ( x) ... f n ( x . . . . W (f1 , f 2 , . . ., f n ) provided the functions . . . . . (n 1) f1 ( x) . (n 1) f2 ( x) . . ... (n 1) f1 ( x) have n 1 derivative s. Test for independence of a set of functions: The set of functions f1 , f 2 , . . ., f n is linearly independen t if the Wronskian W(f1 , f 2 , . . ., f n ) 0 for every x in the int erval . Problem 1: Use the Wronskian to show that the functions sinx and cosx are linearly independent. W(sin x, cos x) sin x cos x cos x sin x sin2 x cos2 x 1 0 for all x valuew Theorem : If a b then the functions e ax and e bx are linearly independen t . W( e ax , e bx ) e ax ae ax e bx be bx e ax e bx 1 1 a b a ax b bx (b a ) 0 because e ax 0' e bx 0 and b a 0 Therefore , e ax and e bx are linearly independen t . -1- General Solution: a general solution of a DE is a family of solutions defined on some interval I that contains all the solutions of the DE that are defined on the interval I. Initial Value problem of an nth-order linear differential equation Model : a n ( x) dn y a n 1 ( x ) d n 1y . . . a 2 ( x) d2y a1 ( x) dy a o ( x )y g( x ) dx dx n 1 dx 2 Initial conditions : y( x o ) y o , y ( x o ) y1 , y ( x o ) y 2 , . . . y (n 1) ( x o ) y n 1 dx n (1) Existence and uniqueness Theorem: If a n ( x), a n 1 ( x), . . . , a1 ( x) , a o ( x) and gx are all continuous on an int erval I, and a n ( x) 0 for every x in I, and x x o belongs to I, then the solution of the initial value problem (1) exists and it is unique . Properties of the solutions of an nth order homogeneous linear differential equation: 1) Any linear combination of solutions is also a solution. That is, if y1 and y 2 are solutions and c1 anf c 2 are any cons tan ts, then c1y1 c 2 y 2 is also a solution Pr oof : dn y d n 1y d2y dy 1. a n ( x ) a n 1 ( x ) . . . a 2 ( x) a1 ( x) a o ( x )y 0 n n 1 2 dx dx dx dx d n y1 d n 1y 1 d 2 y1 dy 2. a n ( x ) a n 1 ( x ) . . . a 2 ( x) a1 ( x ) 1 a o ( x )y1 0 n n 1 2 dx dx dx dx dn y 2 d n 1y 2 d2y 2 dy 3. a n ( x ) a n 1 ( x ) . . . a 2 ( x) a1 ( x) 2 a o ( x)y 2 0 n n 1 2 dx dx dx dx d n c1y1 c 2 y 2 d n 1 c1y1 c 2 y 2 d 2 c1y1 c 2 y 2 3. a n ( x ) a n 1 ( x ) . . . a 2 ( x) dx n dx n 1 dx 2 dc1y1 c 2 y 2 a1 ( x ) a o ( x)c1y1 c 2 y 2 dx c d n y c d n y c d n 1 y c d n 1 y 1 2 2 a 1 2 2 . . . a ( x )c y a ( x )c y a n ( x) 1 ( x) 1 n 1 o 1 1 o 2 2 n n 1 n 1 dx n dx dx dx n c d n y c d n 1 y 1 a 1 . . . a ( x )c y a ( x) c1d y 2 a n ( x) 1 ( x) 1 n 1 o 1 1 n dx n dx n 1 dx n c d n 1 y 2 . . . a ( x)c y a n 1 ( x ) 1 o 1 2 dx n 1 0 0 0 c1y1 c 2 y 2 is a solution . -2- 2) An nth order homogeneous linear differential equation has n linearly independent solutions: y1 , y 2 , y 3 , . . , y n . 3). The general solution of the homogeneous linear differential equation is given by y h c1y1 c 2 y 2 . . . c n y n . 4) If Yh is the homogeneous solution of a non-homogeneous differential equation and Yp is a particular solution of the non-homogeneous differential equation, then Y = Yh + Yp is the general solution of the non-homogeneous differential equation. Pr oof : Step 1. Let a n ( x ) dn y d n 1y d2y dy a n 1 ( x ) . . . a 2 ( x) a1 ( x ) a o ( x )y g ( x ) n n 1 2 dx dx dx dx Step 2. Yh is the hom ogeneous solution a n ( x) dn y h d n 1y h d2yh dy a n 1 ( x ) . . . a 2 (x) a1 ( x ) h a o ( x )y h 0 dx dx n dx n 1 dx 2 Step 3. Yp is the hom ogeneous solution a n ( x) Step 4. dn y p dx n a n 1 ( x ) d n 1y p dx n 1 . . . a 2 (x) d2yp dx 2 a1 ( x ) dy p dx a o ( x )y p g ( x ) dn y h y p d n 1 y h y p d2 yh yp a n (x) a n 1 ( x ) . . . a 2 (x) dx n dx n 1 dx 2 d yh yp a1 ( x ) a o (x) y h y p dx n 2 n n 1 2 y h d n 1 y p d y h d y p d d y h d y p a n (x) a n 1 ( x ) . . . a 2 (x) n n n 1 n 1 2 dx dx dx dx dx dx 2 dy h d y p a1 ( x ) a o ( x ) y h ( y p ) dx dx d n y d n 1 y 2 h a h . . . a ( x ) d y h a ( x ) dy h a ( x )y ) a n ( x) (x) n 1 2 1 o h dx n dx n 1 dx 2 dx dn y d n 1 y d2 y d yp p p p a n ( x) a n 1 ( x ) . . . a 2 ( x) a1 ( x ) a o (x) y p ) n n 1 2 dx dx dx dx 0 g( x ) g( x ) Therefore , y h y p is a solution of the non hom ogeneous differenti al equation -3- Problem 2. Consider the differential equation y y 2 y sin x 3 cos x . If y e 2 x and y e x are solutions of the related homogeneous equation and y=cosx is a particular solution, find a) the general solution y e 2x and y e x are solutions of the related hom ogeneous equation y h c1e 2x c 2 e x is the hom ogeneous solution y p cos x y c1e 2x c 2 e x cos x is the general solution Answer : y c1e 2x c 2e x cos x b) The IVP solution where y(0)=1 and y (0) 2 y ( 0) 1, y ( 0) 2 and y c1e 2 x c 2 e x cos x y 2c1e 2 x c 2 e x sin x 2 c1 3 1 c1 c 2 1 c1 c 2 2 2 2c1 c 2 3c1 2 c 2 3 2 2 y e 2 x e x cos x is the IVP solution 3 3 5) Theorem. If y e ax is a solution of the hom ogeneous differenti al equation with constant coefficients an dn y dx n a n 1 d n 1y dx n 1 ... a2 d2y dx 2 a1 dy a o y 0, then " a" is a solution of dx the polynomial function a n x n a n 1x n 1 . . . a 2 x 2 a1x a 0 0 Pr oof : y e ax y ae ax , y a 2 e ax , . . . , y (n ) a n e an a a a . . . a a a n a n e an a n 1 a n 1e an . . . a 2 a 2 e ax a1ae ax a o e ax 0 an n n 1 n 1 2 2 a1a a o 0 Definition : the polynomial function a n x n a n 1x n 1 . . . a 2 x 2 a1x a 0 0 is called the Characteri stic Equation of the linear hom ogeneous differenti al equation with constant coefficients. The solutions are called the Eigenvalues of the DE . Definition : a n D n a n 1Dn 1 . . . a 2 D 2 a1D a 0 0 is called the differenti al operator of the linear hom ogeneous differenti al equation with constant coefficients. -4- Pr oblem 3. Find the general solution of y 3y 4y 12y 0 Solution : y e ax is a solution y ae ax , y a 2 e ax , y a 3e ax a 3e ax 3a 2 e ax 4ae ax 12e ax 0 a 3 3a 2 4a 12 0 (a 2)(a 2)(a 3) 0 a 2 or a 2 or a 3 y1 e 2x , y 2 e 2x and y 3 e 3x are linearly independen t solutions . Therefore , the general solution is y c1e 2x c 2 e 2x c 3e 3x Pr oblem 4. Solve the DE y y 6y 0 Solution : y e ax is a solution a 2 a 6 0 (a 3)(a 2) 0 a 3 or a 2 y c1e 2x c 2 e 3x is the genereal solution Problem 5. Find the general solution of the differential equation y ( 4) y 4y 4y 0 y ( 4) y 4y 4 y 0 a 4 a 3 4a 2 4a 0 is the characteristic equation. a 3 (a 1) 4a(a 1) 0 a(a 1)(a 2 4) 0 a(a 1)(a 2)(a 2) 0 a 0, a 1, a 2, and a 2 y c1e 0 x c 2 e x c 3e 2x c 4 e 2 x Note : y c 2 e x 2c 3e 2x 2c 4 e 2 x y c 2 e x 4c 3e 2 x 4c 4 e 2 x y c 2 e x 8c 3e 2 x 8c 4 e 2x Answer : y c1 c 2 e x c 3e 2 x c 4 e 2 x is the general solution b ) y (0) 2, y (0) 1, y (0) 0, Y (0) 0 C1 1 4 2 C1 C 2 C3 C 4 C 2 1 C 2C 2C 3 2 3 4 1 0 C 2 4C3 4C 4 C3 4 0 C 2 8C3 8C 4 1 C 4 12 4 1 1 y 1 e x e 2 x e 2 x is the IVP solution 3 4 12 -5-
© Copyright 2026 Paperzz