§3.5 Distribution of
Special Functions
•
Sum and difference
Z=X+Y, Z=X-Y
Product and quotient
Z=XY, Z=Y\X
Functions of discrete random vectors
Suppose that
(X, Y)~P(X=xi, Y=yj)=pij ,i, j=1, 2, …
then Z=g(X, Y)~P{Z=zk}=
ij
i ,k : g ( xi , y j ) zk
k=1, 2, …
or
p
…
(X,Y)
(x1,y1)
(x1,y2)
(xi,yj)
pij
p11
p12
pij
Z=g(X,Y)
g(x1,y1)
g(x1,y2)
g(xi,yj)
=pk ,
…
EX Suppose that X and Y are independent, and the
pmfs of X and Y are
X
1
3
Y
2
4
PX
0.3
0.7
PY
0.6
0.4
Find the pmf of Z=X+Y.
Solution Because X and Y are independent, so
P{ X xi ,Y y j } P{ X xi }P{Y y j },
Y
2
4
X
0.12
1 0.18
3 0.42
0.28
X
1
3
Y
P
2 4
0.18 0.12
0.42 0.28
Z X Y
0.18
0.12
0.42
0.28
( X ,Y ) Z X Y
(1,2)
(1,4)
( 3,2)
( 3,4)
3
5
5
7
3
5
7
0.18
0.54
0.28
then
P
EX Suppose that X and Y are independent
and both are uniformly distributed on 0-1
with law
X 0
1
P q
p
Try to determine the distribution law of
(1) W=X+Y ; (2) V=max(X, Y);
(3) U=min(X, Y);
(4)The joint distribution law of w and V .
(X,Y)
pij
(0,0)
V=max(X, Y)
U=min(X, Y)
V
0
1
(1,0)
pq
pq
0
1
1
p
2
0
1
0
1
1
0
1
q
W=X+Y
W
(0,1)
2
0
0
q
0
2
(1,1)
1
2
0
0
2 pq
p
2
2
Example Suppose X ~ P(1 ), Y ~ P(2 ) and are
independent of each other, then
Z X Y ~ P(1 2 ).
Example Suppose X ~ b(n, p ), Y ~ b(m, p ) and are independent
of each other , then
Z X Y ~ b(m n, p).
Example Suppose
X ~ P(1 ), Y ~ P(2 ) and are
independent of each other, then
Z X Y ~ P(1 2 ).
Proof
e 1 1i
P ( X i)
i=0,1,2,…
i!
2 j
e 2
P (Y j )
j=0,1,2,…
j!
then
r
P ( Z r ) P ( X i ,Y r i )
i 0
r
P ( Z r ) P ( X i, Y r i )
i 0
r
e
- 1
i 0
then
e
i!
( 1 2 )
r!
e
i
1
( 1 2 )
e
- 2
r-i
2
(r - i)!
r
r!
i r-i
1 2
i 0 i!(r - i)!
(1 2 ) , r = 0 , 1 , …
r
r!
Z X Y ~ P(1 2 ).
a) Sum and difference
Let X and Y be continuous r.v.s with joint pdf f
(x, y), Let Z=X+Y ,Find the pdf of Z=X+Y.
y
The cdf of Z is :
FZ z P Z z
P X Y z
f ( x, y)dxdy
D
D={(x, y): x+y ≤z}
0
x
x y z
f ( x, y)dxdy
FZ ( z )
x y z
z y
FZ ( z ) [
f ( x, y)dx ]dy
y
y
0
Let x=u-y, then
z
z
FZ ( z ) [ f ( u y, y)du]dy
[ f ( u y, y)dy]du
x
x y z
z
FZ ( z ) [ f ( u y, y)dy]du
Then the pdf of Z=X+Y is :
fZ ( z ) F ( z ) f ( z y, y)dy
'
Z
Or
fZ ( z ) F ( z ) f ( x, z x )dx
'
Z
In particular, if X and Y are independent, then
f Z ( z ) f X ( z y ) fY ( y )dy
f ( z)
Z
f X ( x ) fY ( z x )dx
which is called the convolution of fx(.) and fy(.).
Example 1 If X and Y are independent with
the same pdf
1, 0 x 1
f ( x)
el se
0,
Find the pdf of Z=X+Y.
Solution
fZ ( z ) f X ( x ) fY ( z x )dx
0 x 1
0 z x 1
i.e.
0 x 1
z 1 x z
f Z ( z ) f X ( x ) fY ( z x )dx
when z 0 or z 2 , f Z z 0.
So
when 0 z 1 ,
f Z z dx z
0
z
when 1 z 2 ,
f Z z dx 2 z
1
z 1
so
z , 0 z 1,
f Z z 2 z ,1 z 2,
0 , else.
z x 1
z
2
z
1
z
O zz 1 1
zx
x
Example 2 If X and Y are independent with
the same distribution N(0,1) , Find the pdf of
Z=X+Y.
Solution
fZ ( z ) f X ( x ) fY ( z x )dx
2
z x
x2
2
1
2
e
e
dx
2π
z2
1 2 ( x 2 zx )
e e
dx
2π
1
e
2π
z2
4
e
z
( x )2
2
dx
1
e
2π
z2
4
e
z
( x )2
2
dx
z
let t x , then
2
1
fZ z e
2π
z2
4
1
e dt 2π e
t2
z2
2
1
2 2
e
2π 2
Z=X+Y ~ N(0,2).
z2
4
π
二、Z=Y\X, Z=XY
let f(x,y) is the joint pdf of (X,Y), then the pdf
of Z=Y\X is
fY X ( z)
f XY ( z )
x f ( x, xz)dx.
1
z
f ( x, )dx.
x
x
When X and Y are independent,
fY X ( z )
f XY ( z )
x f X ( x) fY ( xz )dx.
1
z
f X ( x) fY ( )dx.
x
x
© Copyright 2026 Paperzz