Example 1: Cantilever Beam A1.1 Practical exercises with the FEM program ANSYS (to [35]) Example 1: Cantilever Beam For a steel Cantilever Beam, built in at one end only, calculate the first three natural bending frequencies f1 to f3, and determine the corresponding natural oscillation modes. For comparison, calculate solutions for different numbers of elements and element types (beam, shell and solid elements). Fig. 1.1: Cantilever beam l b h E 600 mm 10 mm 20 mm 210 000 N/mm2 7850 kg/m3 1.1 Theoretical Calculation (see Lecture “Dynamics of Machinery” [2]): The natural angular frequency is calculated from: K AK E I L 4 AK E I ( A ) L4 with: A1 = 3,52 ; A2 = 22,4 ; A3 = 61,7 Set as inputs, this results in: 1 291,980 1 S f1 = 46 ,470 Hz 2 1858,06 1 S f 2 = 295,40 Hz 3 5117,96 1 S f3 = 814,55 Hz A1.2 Example 1: Cantilever Beam 1.2 Modal analysis script: cantilever beam with finite beam elements Intro finish finish actual processing mode /clear,nostart clear the database Pre-Processing /filname,p1modalbeam,0 change the job name for the analysis /prep7 enter pre-processing /title,onesided clamped beam (BEAM) title for actual problem et,1,beam3 define finite element type 1 *ask,parHeight,'beam height [m] ?',0.02 user input: beam height *ask,parWidth,'beam width [m] ?',0.01 user input: beam width parArea = parHeight*parWidth calculate cross section area parADev =parWidth*parHeight*parHeight*parHeight/12 calculate moment of inertia r,1,parArea,parADev,parHeight define property set 1 *ask,parEModulus,'elastic modulus [N/m^2] ?',2.1e11 user input: elastic modulus mp,ex,1,parEModulus define elastic modulus for material set 1 *ask,parDensity,'density [kg/m^3] ?',7850 user input: density mp,dens,1,parDensity define density for material set 1 *ask,parLat,'lateral contraction [-] ?',0.3 user input: lateral contraction mp,nuxy,1,parLat define lateral contraction for material set 1 k,1,0,0,0, define keypoint 1 with coordinates (0,0,0) k,2,0.6,0,0, define keypoint 2 with coordinates (0.6,0,0) lstr,1,2 lmesh,1 define line 1 with keypoints 1 and 2 associate element attributes with the selected, unmeshed lines user input: number of finite elements specify the divisions and spacing ratio on unmeshed lines generate nodes and line elements along lines d,1,all,0 define DOF constraints at nodes /view,1,1,1,1 define the viewing direction for the display /pbc,all,,1 display option for all boundary symbols eplot produce an element display finish leave actual processor save,p1modalbeam,db,,all save database in p1modalbeam.db latt,1,1,1, *ask,numElements,'number of finite elements ?',1 lesize,1,,,numElements,,,,,1 Solution-Processing /solu enter the solution-processor antype,modal specify the analysis type and restart status *ask,numModes,'number eigen -forms/-frequencies ?',3 modopt,subsp,numModes user input: number of frequencies to calculate specify the number of modes to expand/write for a modal analysis specify modal analysis options solve start a solution finish leave solution-processor mxpand,anzModes Example 1: Cantilever Beam A1.3 Post-Processing /post1 enter post1-processor flag=1 set flag parameter to 1 *dowhile,flag testing flag parameter: if 0=leave do-loop *ask,varMode,'show eigenform [0=exit]',1 user input: eigenform to display *if,varMode,eq,0,then testing varMode parameter on equals 0 set,,,,,,,varMode set flag parameter to 0 testing varMode parameter on lower equal numModes select calculated eigenform number to display pldisp,1 display eigenform number flag=0 *elseif,varMode,le,numModes,then *endif close * if query *enddo close *do-loop finish leave post1-processor A1.4 Example 1: Cantilever Beam 1.3 Modal analysis Results: cantilever beam with finite beam elements Fig. 1.2: 1st eigenmode 46.408 Hz Fig. 1.3: 2nd eigenmode 290.468 Hz Fig. 1.4: 3rd eigenmode 811.818 Hz Example 1: Cantilever Beam A1.5 1.4 Modal analysis script: cantilever beam with finite shell elements Intro See intro chap. 1.2 Pre-Processing /filname,p1modalshell,0 change the jobname for the analysis /prep7 enter pre-processing /title,onesided clamped beam (SHELL) title for actual problem et,1,shell63 define finite element type 1 *ask,parThick,'shell thickness [m] ?',0.01 user input: enter shell thickness r,1,parThick define property set 1 *ask,parEModulus,'modulus elasticity [N/m^2] ?',2.1e11 user input: enter modulus of elasticity mp,ex,1,parEModulus define material elasticity for set 1 *ask,parDensity,'density [kg/m^3] ?',7850.0 user input: enter material density mp,dens,1,parDensity define material density for set 1 *ask,parLat,'lateral contraction [-] ?',0.3 user input: enter lateral contraction mp,nuxy,1,parLat define material lateral contraction for set 1 *ask,parHeight,'beam height [m] ?',0.02 user input: beam height *ask,parLength,'beam length [m] ?',0.6 aatt,1,1,1,0, user input: beam length defines rectangular area with parLenght and parHeight connect finite element attributes with area 1 *ask,parElemLength,'mean element length [m] ?',0.005 user input: mean element size esize,parElemLength,0, define previous entered mean element size mshkey,1 switching to mapped meshing amesh,1 create elements on area mshkey,0 switching to free meshing dl,4,,all, define boundary conditions on line 4 da,1,uz, define boundary conditions on area 1 da,1,rotx, define boundary conditions on area 1 da,1,roty, define boundary conditions on area 1 /view,1,1,1,1 define the viewing direction for the display /pbc,all,,1 display option for all boundary symbols eplot produce an element display finish leave pre processor save,p1modalshell,db,,all save database in p1modalshell.db blc4,0,0,parLength,parHeight Solution-Processing see Solution-Processing chap. 1.2 Post-Processing see Post-Processing chap. 1.2 A1.6 Example 1: Cantilever Beam 1.5 Modal analysis results: cantilever beam with finite shell elements Fig. 1.5: 1st eigenmode 46.405 Hz Fig. 1.6: 2nd eigenmode 289.42 Hz Fig. 1.7: 3rd eigenmode 804.238 Hz Example 1: Cantilever Beam A1.7 1.6 Modal analysis script: cantilever beam with finite solid elements Intro see intro chap. 1.2 Pre-Processing /filname, p1modalsolid,0 change the jobname for the analysis /prep7 enter preprocessing /title,onesided clamped beam (SOLID) title for actual problem et,1,solid45 define finite element type 1 *ask,parEModulus,'modulus elasticity [N/m^2] ?',2.1e11 user input: enter modulus of elasticity mp,ex,1,parEModulus define material elasticity for set 1 *ask,parDensity,'density [kg/m^3] ?',7850.0 user input: enter material density mp,dens,1,parDensity define material density for set 1 *ask,parLat,'lateral contraction [-] ?',0.3 user input: enter lateral contraction mp,nuxy,1,parLat define material lateral contraction for set 1 *ask,parHeight,'beam height [m] ?',0.02 user input: beam height *ask,parLength,'beam lenght [m] ?',0.6 user input: beam length *ask,parWidth,'beam width [m] ?',0.01 user input: beam width block,0,parLength,0,parHeight,0,parWidth, create previously defined hexaedric volume vatt,1,,1,0 connect finite element attributes with volume 1 *ask,parElemLength,'mean element length [m] ?',0.01 user input: mean element size esize,parElemLength,0, define previously entered mean element size mshkey,1 switching to mapped meshing vmesh,1 create elements on volume mshkey,0 switching to free meshing d,all,,,,,,uz,,,,, boundary conditions for all nodes in z-direction da,5,all, boundary conditions on area 5 /view,1,1,1,1 define the viewing direction for the display /pbc,all,,1 display option for all boundary symbols eplot produce an element display finish leave pre processor save,p1modalsolid,db,,all save database in p1modalsolid.db Solution-Processing see Solution-Processing chap. 1.2 Post-Processing see Post-Processing chap. 1.2 A1.8 Example 1: Cantilever Beam 1.7 Modal analysis results: cantilever beam with finite solid elements Fig. 1.8: 1st eigenmode 48.667 Hz Fig. 1.9: 2nd eigenmode 303.424 Hz Fig. 1.10: 3rd eigenmode 842.743 Hz Example 2: Triangular Leaf Spring A2.1 Example 2: Triangular Leaf Spring In this example the first three natural oscillation modes of a Triangular Leaf Spring are to be investigated. The natural frequency of the first eigenmode (natural mode) can be compared with the approximation calculation using Rayleigh. Fig. 2.1: Geometric layout of the triangular leaf spring L [mm] B [mm] t [mm] E [N/mm2] [kg/m3] 400 140 mm 4 mm 210 000 N/mm2 7850 kg/m3 2.1 Theoretical Calculation: The angular natural frequency is calculated according to Rayleigh from: L R ² E ( x) I ( x) y 0 ²( x ) dx 0 L ( x) A( x) y 0 ²( x ) dx 0 Where: E(x) = E = constant, (x) = = constant x x A( x ) b t 1 A0 1 L L I ( x) b t³ x x 1 I0 1 12 L L Approximate description of the 1st bending mode is: ² x x y0 ( x) 1 cos cos y0 ( x) 4 L² L2 L2 A2.2 Example 2: Triangular Leaf Spring Fitting these into the above equation: x ² x 0 E I 0 1 L 4 L ² cos L 2 dx L 2 x x 0 A0 1 L 1 cos L 2 dx 2 L R2 Inserting the limits 0 and L in the above integrals: R2 E I0 4 E I0 2 64 L3 16 L3 3 A0 L 7 A0 L 4 2 After simplification the equation has the form: R 2 E I 0 4 ( 2 4) 16 A0 L4 (3 2 28) After inserting the values, the fundamental natural angular frequency, according to Rayleigh, results in: R = 270,42 1/s f R1 = 43,04 Hz > f exact Results from ANSYS: f1= 42,958 HZ Example 2: Triangular Leaf Spring A2.3 2.2 Modal analysis script: Triangular leaf spring with finite shell elements Intro see intro chap. 1.2 Pre-Processing /filname,p2modalshell,0 change the jobname for the analysis /prep7 enter preprocessing /title,triangular leaf spring (SHELL) title for actual problem et,1,shell63 define finite element type 1 *ask,parLength,'triangular depth [m] ?',0.4 user input: height of triangle, see fig.2.1: L L=parLength define height of triangle *ask,parWidth,'triangular base width [m] ?',0.14 user input: width of triangle, see fig.2.1: B b=parWidth define width of triangle *ask,parEModulus,'modulus elasticity [N/m^2] ?',2.1e11 user input: enter modulus of elasticity mp,ex,1,parEModulus define material elasticity for set 1 *ask,parDensity,'density [kg/m^3] ?',7850.0 user input: enter material density mp,dens,1,parDensity define material density for set 1 *ask,parLat,'lateral contraction [-] ?',0.3 user input: enter lateral contraction mp,nuxy,1,parLat define material lateral contraction for set 1 *ask,parThick,'thickness of shell [m] ?',0.004 user input: thickness of triangular leaf r,1,parThick define thickness of triangular leaf k,1,0,0,-b/2, define keypoint 1 at specified coordinate k,2,0,0,b/2, define keypoint 2 at specified coordinate k,3,l,0,0, define keypoint 3 at specified coordinate lstr,1,2 define line between keypoint 1 and 2 lstr,2,3 define line between keypoint 2 and 3 lstr,3,1 define line between keypoint 3 and 1 al,1,2,3 define area for triangular leaf spring /view,1,1,1,1 define the viewing direction for the display aatt,1,1,1,0, connect finite element attributes with area 1 *ask,parElemLength,'mean element length [m] ?',0.01 user input: mean element size esize,parElemLength,0, define previous entered mean element size mshkey,0 activate free meshing amesh,1 mesh area 1 dl,1,,all boundary condition for line 1 finish leave pre processor save,p2modalshell,db,,all save database in p2modalshell.db Solution-Processing see Solution-Processing chap. 1.2 Post-Processing see Post-Processing chap. 1.2 A2.4 Example 2: Triangular Leaf Spring 2.3 Modal analysis results: Triangular leaf spring with finite shell elements Fig. 2.2: 1st eigenmode 42.958 Hz Fig. 2.3: 2nd eigenmode 186.073 Hz Fig. 2.4: 3rd eigenmode 414.073 Hz
© Copyright 2026 Paperzz