Example 1

Limit and Continuity
1.1 Definition of Limit
1.2 One sided Limit
1.3 Infinite limit and Vertical Asymptotes
1.4 Calculating Limit using Limit Law
1.5 Limit at Infinity and Horizontal Asymptotes
1.5 Limit of Trigonometric Function
1.6 Continuity
1 LIMIT AND CONTINUITY
1.1 DEFINITION OF LIMIT
The most basic use of limits is to describe how a function behaves as the independent variable
approaches a given value. Here we intend to give numerical and graphical approaches to the
concept of limit using examples
Let ๐‘“(๐‘ฅ) = 2 ๐‘ฅ + 2 and compute ๐‘“(๐‘ฅ) as ๐‘ฅ takes values closer to 1. We first consider
values of ๐‘ฅ approaching 1 from the left (๐‘ฅ < 1).
Solution
๐‘ฅ
๐‘“(๐‘ฅ)
0.5
3
0.8
3.6
0.9
3.8
0.95
3.9
0.99
3.98
0.999
3.998
0.9999
3.9998
0.99999
3.99998
We now consider ๐‘ฅ approaching 1 from the right (๐‘ฅ > 1).
๐‘ฅ
๐‘“(๐‘ฅ)
1.5
5
1.2
4.4
1.1
4.2
1.05
4.1
1.01
4.02
1.001
4.002
1.0001
4.0002
1.00001
4.00002
In both cases as ๐‘ฅ approaches 1, ๐‘“(๐‘ฅ) approaches 4. Intuitively, we say that
lim ๐‘“(๐‘ฅ) = 4
๐‘ฅโ†’1
.
LIMIT (DEFINITION)
We are talking about the values that ๐‘“(๐‘ฅ) takes when ๐‘ฅ gets closer to 1 and not ๐‘“(1).
If the values of ๐‘“(๐‘ฅ) can be made as close as we like to ๐ฟ by taking values of ๐‘ฅ
sufficiently close to ๐‘Ž
(but not equal to ๐‘Ž), then we write
lim ๐‘“(๐‘ฅ) = ๐ฟ
๐‘ฅโ†’๐‘Ž
Which is read โ€œthe limit of ๐‘“(๐‘ฅ) as x approaches a is ๐ฟโ€ or โ€œ ๐‘“(๐‘ฅ) approaches ๐ฟ
as ๐‘ฅ approaches ๐‘Ž. the expression ๐‘“(๐‘ฅ) โ†’ ๐ฟ ๐‘Ž๐‘  ๐‘ฅ โ†’ ๐‘Ž .
Example 1
For the functions below, graph and find
lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’1
๐‘Ž)
๐‘)
๐‘)
Solution
Example 2
๐‘“(๐‘ฅ) =
๐‘ฅ2 โˆ’ 1
๐‘ฅโˆ’1
๐‘ฅ2 โˆ’ 1
๐‘”(๐‘ฅ) = { ๐‘ฅ โˆ’ 1 ,
1,
โ„Ž(๐‘ฅ) = ๐‘ฅ + 1
๐‘ฅโ‰ 1
๐‘ฅ=1
Discuss the behavior of the following function as ๐‘ฅ โ†’ 0
๐‘Ž)
๐‘)
0, ๐‘ฅ < 0
๐‘“(๐‘ฅ) = {
1, ๐‘ฅ โ‰ฅ 0
1
โ„Ž(๐‘ฅ) = {๐‘ฅ , ๐‘ฅ โ‰  0
0, ๐‘ฅ = 0
Solution
a)
b)
Example 3
For the function ๐‘“(๐‘ก), find the following limits or explain why they donโ€™t exist.
๐‘Ž)
๐‘)
๐‘)
lim ๐‘“(๐‘ก)
๐‘กโ†’โˆ’2
lim ๐‘“(๐‘ก)
๐‘กโ†’โˆ’1
lim ๐‘“(๐‘ก)
๐‘กโ†’0
Example 4
Which of the following statements about the function ๐‘ฆ = ๐‘“(๐‘ฅ) graphed here are true and which are
false?
a) lim ๐‘“(๐‘ฅ) ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก
๐‘ฅโ†’0
b)
lim ๐‘“(๐‘ฅ) = 1
๐‘ฅโ†’0
c)
lim ๐‘“(๐‘ฅ) = 0
๐‘ฅโ†’0
d)
lim ๐‘“(๐‘ฅ) = 1
๐‘ฅโ†’1
e)
lim ๐‘“(๐‘ฅ) = 0
๐‘ฅโ†’1
Example 5
Explain why the limit s do not exist
๐‘ฅ
๐‘ฅโ†’0 |๐‘ฅ|
๐‘Ž) lim
b)
1
๐‘ฅโ†’1 ๐‘ฅ โˆ’ 1
lim
1.2 ONE SIDED LIMIT
For some functions, it is appropriate to look at their behavior from one side only. If x
approaches c from the right only, you write
๐ฅ๐ข๐ฆ ๐Ÿ(๐ฑ)
๐ฑโ†’๐œ +
or if x approaches c from the left only, you write
๐ฅ๐ข๐ฆ ๐Ÿ(๐ฑ)
๐ฑโ†’๐œ โˆ’
It follows, then, that
๐ฅ๐ข๐ฆ ๐Ÿ(๐ฑ) = ๐‹
๐ฑโ†’๐œ
if and only if
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = ๐ฅ๐ข๐ฆโˆ’ ๐’‡(๐’™) = ๐‘ณ
๐’™โ†’๐’„+
๐’™โ†’๐’„
Example 1: Evaluate
lim โˆš๐‘ฅ
๐‘ฅโ†’0+
Because ๐‘ฅ is approaching 0 from the right, it is always positive;โˆš๐‘ฅ is getting closer and closer to
zero, so
lim+ โˆš๐‘ฅ = 0
๐‘ฅโ†’0
Although substituting 0 for ๐‘ฅ would yield the same answer, the next example illustrates why this
technique is not always appropriate.
Example 2: Evaluate
lim โˆš๐‘ฅ
๐‘ฅโ†’0โˆ’
Because ๐‘ฅ is approaching 0 from the left, it is always negative, and โˆš๐‘ฅ does not exist. In this
situation,
limโˆ’ โˆš๐‘ฅ
๐‘ฅโ†’0
DNE. Also, note that the two sided limit
lim โˆš๐‘ฅ
๐‘ฅโ†’0
๐‘‘๐‘œ๐‘’๐‘  ๐‘›๐‘œ๐‘ก ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก ๐‘๐‘’๐‘๐‘Ž๐‘ข๐‘ ๐‘’ limโˆ’ โˆš๐‘ฅ = 0 โ‰  limโˆ’ โˆš๐‘ฅ
Please refer to the function ๐‘“(๐‘ฅ) = โˆš๐‘ฅ below:
๐‘ฅโ†’0
๐‘ฅโ†’0
Example 3: Evaluate
๐‘Ž) limโˆ’
|๐‘ฅ โˆ’ 2|
๐‘ฅโˆ’2
๐‘) lim+
|๐‘ฅ โˆ’ 2|
๐‘ฅโˆ’2
๐‘ฅโ†’2
๐‘ฅโ†’2
|๐‘ฅ โˆ’ 2|
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 2
๐‘) lim
Ans:
a) As ๐‘ฅ approaches 2 from the left, ๐‘ฅ โˆ’ 2 is negative, and | ๐‘ฅ โˆ’ 2| = โˆ’ ( ๐‘ฅ โˆ’ 2); hence,
lim
๐‘ฅโ†’2โˆ’
|๐‘ฅ โˆ’ 2| โˆ’(๐‘ฅ โˆ’ 2)
=
= โˆ’1
๐‘ฅโˆ’2
๐‘ฅโˆ’2
b) As ๐‘ฅ approaches 2 from the right, ๐‘ฅ โˆ’ 2 is positive, and | ๐‘ฅ โˆ’ 2| = ๐‘ฅ โˆ’ 2; hence;
|๐‘ฅ โˆ’ 2| (๐‘ฅ โˆ’ 2)
lim+
=
=1
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 2
๐‘ฅโˆ’2
c) Because
limโˆ’
๐‘ฅโ†’2
|๐‘ฅ โˆ’ 2|
|๐‘ฅ โˆ’ 2|
โ‰  lim+
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 2
๐‘ฅโˆ’2
|๐‘ฅ โˆ’ 2|
Does Not Exist
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 2
Therefore lim
Example 4
Use the definition of one sided limits to prove the statements below:
๐‘Ž) limโˆ’
๐‘ฅ
= โˆ’1
|๐‘ฅ|
๐‘) lim+
๐‘ฅโˆ’2
=1
|๐‘ฅ โˆ’ 2|
๐‘ฅโ†’0
๐‘ฅโ†’2
EXAMPLE 5
The graph above shows that as ๐‘ฅ approaches 2 from the left, ๐‘ฆ = ๐‘“(๐‘ฅ) approaches 1 and
this can be written as
lim ๐‘“(๐‘ฅ) = 1
๐‘ฅโ†’2โˆ’
As ๐‘ฅ approaches 2 from the right, ๐‘ฆ = ๐‘“(๐‘ฅ) approaches 2 and this can be written as
limโˆ“ ๐‘“(๐‘ฅ) = 2
๐‘ฅโ†’2
Note that the left and right hand limits and ๐‘“(2) = 1.5 are all different.
EXAMPLE 6
This graph shows that
lim ๐‘“(๐‘ฅ) = 1
๐‘ฅโ†’0โˆ’
and
lim ๐‘“(๐‘ฅ) = 1
๐‘ฅโ†’0+
Note that the left and right hand limits are equal and we can write
lim ๐‘“(๐‘ฅ) = 1
๐‘ฅโ†’0
In this example, the limit when ๐‘ฅ approaches 0 is equal to ๐‘“(0) = 1.
Example 7 : For the function ๐‘ฆ = ๐น(๐‘ฅ) , find
(a)
lim
๐น(๐‘ฅ)
๐‘ฅ โ†’ 0โˆ’
(b)
lim
๐น(๐‘ฅ)
๐‘ฅ โ†’ 0+
(c)
๐น(0)
(d)
lim
๐น(๐‘ฅ)
๐‘ฅโ†’0
EXAMPLE 8
This graph shows that as ๐‘ฅ approaches โˆ’ 2 from the left, ๐‘“(๐‘ฅ) gets smaller and smaller
without bound and there is no limit. We write
lim โˆ’ ๐‘“(๐‘ฅ) = โˆ’โˆž
xโ†’โˆ’2
As ๐‘ฅ approaches โˆ’ 2 from the right, ๐‘“(๐‘ฅ) gets larger and larger without bound and there is
no limit. We write
lim ๐‘“(๐‘ฅ) = +โˆž
xโ†’โˆ’2+
Note that โˆ’โˆž and +โˆž are symbols and not numbers. These are symbols used to indicate
that the limit does not exist.
1.3 INFINITE LIMITE AND VERTICLE ASYMPTOTES
In this section we will take a look at limits whose value is infinity or minus infinity. These kinds of
limit will show up fairly regularly in later sections and in other courses and so youโ€™ll need to be able
to deal with them when you run across them.
The first thing we should probably do here is to define just what we mean when we say that a limit
has a value of infinity or minus infinity.
Definition
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = +โˆž
๐’™โ†’๐’‚
if we can make ๐‘“(๐‘ฅ) arbitrarily large for all ๐‘ฅ sufficiently close to ๐‘ฅ = ๐‘Ž, from
both sides, without actually letting ๐‘ฅ = ๐‘Ž.
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = โˆ’โˆž
๐’™โ†’๐’‚
if we can make ๐‘“(๐‘ฅ) arbitrarily large and negative for all ๐‘ฅ sufficiently close to
๐‘ฅ = ๐‘Ž, from both sides, without actually letting ๐‘ฅ = ๐‘Ž.
Example 1
1
= +โˆž
2
๐‘ฅโ†’0 ๐‘ฅ
a) lim
โˆ’1
= โˆ’โˆž
2
๐‘ฅโ†’0 (๐‘ฅ โˆ’ 1)
b) lim
1
=โˆž
๐‘ฅโ†’0 ๐‘ฅ
c) lim
d) lim
๐‘ฅโ†’2+
๐‘ฅโˆ’3
๐‘ฅ2 โˆ’ 4
๐ด๐‘›๐‘ : โˆ’ โˆž
๐‘ฅโˆ’3
2
๐‘ฅโ†’2โˆ’ ๐‘ฅ โˆ’ 4
๐ด๐‘›๐‘ : + โˆž
๐‘ฅโˆ’3
2
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 4
๐ด๐‘›๐‘ : ๐ท๐‘๐ธ
e) lim
f) lim
3 โˆ’ ๐‘ฅ,
1) Let ๐‘“(๐‘ฅ) = {๐‘ฅ
+ 1,
2
๐‘ฅ<2
๐‘ฅ>2
a) Find lim ๐‘“(๐‘ฅ) and limโˆ’ ๐‘“(๐‘ฅ)
๐‘ฅโ†’2
๐‘ฅโ†’2+
b) Does lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’2
exists? If so, what it is? If not, why not?
c) Find lim ๐‘“(๐‘ฅ)and limโˆ’ ๐‘“(๐‘ฅ)
๐‘ฅโ†’4 +
๐‘ฅโ†’4
d) Does lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’4
exists? If so, what it is? If not, why not?
3 โˆ’ ๐‘ฅ,
2) Let ๐‘“(๐‘ฅ) = { ๐‘ฅ2,
,
2
๐‘ฅ<2
๐‘ฅ = 2 be the function below
๐‘ฅ>2
a) Find lim ๐‘“(๐‘ฅ) and limโˆ’ ๐‘“(๐‘ฅ) , and f(2).
๐‘ฅโ†’2+
๐‘ฅโ†’2
b) Does lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’2
exists? If so, what it is? If not, why not?
c) Find lim ๐‘“(๐‘ฅ) and limโˆ’ ๐‘“(๐‘ฅ)
๐‘ฅโ†’1
๐‘ฅโ†’1+
d) Does lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’1
exists? If so, what it is? If not, why not?
3
3) For the function ๐‘“(๐‘ฅ) = {๐‘ฅ
0
a) Graph ๐‘“(x)
๐‘ฅโ‰ 1
๐‘ฅ=1
b) Find limโˆ’ ๐‘“(๐‘ฅ) and lim+ ๐‘“(๐‘ฅ)
๐‘ฅโ†’1
๐‘ฅโ†’1
c) Does the lim ๐‘“(๐‘ฅ)exist?
๐‘ฅโ†’1
2
4) For the function ๐‘“(๐‘ฅ) = {1 โˆ’ ๐‘ฅ
2
๐‘ฅโ‰ 1
๐‘ฅ=1
a) Graph ๐‘“(x)
b) Find lim ๐‘“(๐‘ฅ)and lim+ ๐‘“(๐‘ฅ)
๐‘ฅโ†’1
๐‘ฅโ†’1โˆ’
c) Does the lim ๐‘“(๐‘ฅ) exist?
๐‘ฅโ†’1
VERTICAL ASYMPTOTE
DEFINITION VERTICAL ASYMPTOTES
A line ๐‘ฅ = ๐‘Ž is a vertical asymptote of the graph of a function ๐‘ฆ = ๐‘“(๐‘ฅ) if either
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = ±โˆž
๐’™โ†’๐’‚+
๐’๐’“ ๐ฅ๐ข๐ฆโˆ’ ๐’‡(๐’™) = ± โˆž
๐’™โ†’๐’‚
Example 2
Discuss the behavior of the functions below
1
(๐‘ฅ โˆ’ 1)
2
๐‘) ๐‘“(๐‘ฅ) =
(๐‘ฅ + 2)2
ans:
a) ๐‘“(๐‘ฅ) =
๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ฅ = 1
๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘ฅ = โˆ’2
a) lim ๐‘“(๐‘ฅ) = โˆ’โˆž ๐‘Ž๐‘›๐‘‘ lim+ ๐‘“(๐‘ฅ) = +โˆž ๐‘“(๐‘ฅ) has vertical asymptote at ๐‘ฅ = 1
๐‘ฅโ†’1โˆ’
๐‘ฅโ†’1
b) lim ๐‘“(๐‘ฅ) = +โˆž ๐‘Ž๐‘›๐‘‘ lim+ ๐‘“(๐‘ฅ) = +โˆž ๐‘“(๐‘ฅ) has vertical asymptote at ๐‘ฅ = โˆ’2
๐‘ฅโ†’โˆ’2โˆ’
๐‘ฅโ†’โˆ’2
Example 3
Find the vertical asymptote for the function ๐‘“(๐‘ฅ) =
1
(๐‘ฅ โˆ’ 2)2
Ans:
1
= +โˆž
๐‘ฅโ†’2 (๐‘ฅ โˆ’ 2)2
lim
y
f(x)=1/(x-2)^2
Series 1
14
12
10
8
6
4
2
x
-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
-2
-4
-6
1
As ๐‘ฅ approaches 2 from the right,(๐‘ฅโˆ’2)2 is positive and eventually becomes larger than any
preassigned number.
limโˆ’
๐‘ฅโ†’2
1
(๐‘ฅโˆ’2)2
As ๐‘ฅ approaches 2 from the left,
assigned number.
1
= +โˆž
(๐‘ฅ โˆ’ 2)2
is positive and eventually becomes larger than any pre
lim+
๐‘ฅโ†’2
1
= +โˆž
(๐‘ฅ โˆ’ 2)2
Example 4
Using limit, find vertical asymptotes of the following functions:
๐‘Ž) ๐‘“(๐‘ฅ) =
๐‘ฅ2 + 1
๐‘ฅโˆ’1
๐‘) ๐‘“(๐‘ฅ) =
๐‘ฅ2 โˆ’ 1
2๐‘ฅ + 1
๐‘) ๐‘“(๐‘ฅ) =
๐‘ฅ3 + 1
๐‘ฅ2
Example 5
Find the all asymptotes for the function ๐‘“(๐‘ฅ) =
๐‘ฅ+3
๐‘ฅโˆ’2
Example 6
Find the all asymptotes for the function ๐‘“(๐‘ฅ) =
๐‘ฅ3 + 1
๐‘ฅ2
1.4 CALCULATING LIMIT USING THE LIMIT LAWS
BASIC LIMITS
๐’‚) ๐ฅ๐ข๐ฆ ๐’Œ = ๐’Œ
๐’™โ†’๐’‚
๐’ƒ) ๐ฅ๐ข๐ฆ ๐’™ = ๐’‚
๐’™โ†’๐’‚
๐’„) ๐ฅ๐ข๐ฆ+
๐Ÿ
= +โˆž
๐’™
๐’…) ๐ฅ๐ข๐ฆโˆ’
๐Ÿ
= โˆ’โˆž
๐’™
๐’™โ†’๐’
๐’™โ†’๐’
LIMIT LAWS
Assume lim ๐‘“(๐‘ฅ) = ๐ด
๐‘ฅโ†’๐‘Ž
1)
and lim ๐‘“(๐‘ฅ) = ๐ต
๐‘ฅโ†’๐‘Ž
๐‘“(๐‘ฅ) = ๐‘, then lim ๐‘“(๐‘ฅ) = ๐‘
๐‘ฅโ†’๐‘Ž
2)
lim ๐‘๐‘“(๐‘ฅ) = ๐‘ lim ๐‘“(๐‘ฅ) = ๐‘๐ด
๐‘ฅโ†’๐‘Ž
๐‘ฅโ†’๐‘Ž
3)
lim [๐‘“(๐‘ฅ) ± ๐‘”(๐‘๐‘ฅ)] = ๐ด ± ๐ต
๐‘ฅโ†’๐‘Ž
lim [๐‘“(๐‘ฅ)๐‘”(๐‘๐‘ฅ)] = lim ๐‘“(๐‘ฅ) lim ๐‘”(๐‘ฅ) = ๐ด ๐ต
4)
๐‘ฅโ†’๐‘Ž
๐‘ฅโ†’๐‘Ž
5)
lim
๐‘ฅโ†’๐‘Ž
๐‘ฅโ†’๐‘Ž
lim ๐‘“(๐‘ฅ) ๐ด
๐‘“(๐‘ฅ)
= ๐‘ฅโ†’๐‘Ž
=
๐‘”(๐‘ฅ) lim ๐‘”(๐‘ฅ) ๐ต
๐‘ฅโ†’๐‘Ž
๐‘›
๐‘›
lim โˆš๐‘“(๐‘ฅ) = ๐‘›โˆš lim ๐‘“(๐‘ฅ) = โˆš๐ด
6)
๐‘ฅโ†’๐‘Ž
๐‘ฅโ†’๐‘Ž
๐‘›
if โˆš๐ด is defined
Example 1
Using the Limit Laws, find the following limits
a) lim 5
๐‘ฅโ†’3
b) lim ๐‘ฅ
๐‘ฅโ†’๐‘’
c) lim โˆš7
๐‘ฅโ†’๐œ‹
d) lim 0
๐œ‹
๐‘ฅโ†’
5
e) lim(๐‘ฅ 3 + 4๐‘ฅ 2 โˆ’ 3)
๐‘ฅโ†’๐‘
๐‘ฅ 4 +๐‘ฅ 2 โˆ’1
2
๐‘ฅโ†’๐‘ ๐‘ฅ +5
f) lim
g) lim โˆš4๐‘ฅ 2 โˆ’ 3
๐‘ฅโ†’2
Example 2
Find limits of rational function below
๐‘ฅ 2 + 5๐‘ฅ + 4
๐‘ฅโ†’โˆ’4 ๐‘ฅ 2 + 3๐‘ฅ โˆ’ 4
๐‘Ž) lim
๐‘ฅ 2 โˆ’ 4๐‘ฅ
๐‘ฅโ†’4 ๐‘ฅ 2 โˆ’ 3๐‘ฅ โˆ’ 4
๐‘) lim
๐‘) lim
9โˆ’๐‘ฅ
๐‘ฅโ†’9 3 โˆ’
โˆš๐‘ฅ
Ans :
(๐‘ฅ + 1)(๐‘ฅ + 4)
๐‘ฅ 2 + 5๐‘ฅ + 4
๐‘ฅ+1 3
= lim
= lim
=
2
๐‘ฅโ†’โˆ’4 ๐‘ฅ + 3๐‘ฅ โˆ’ 4
๐‘ฅโ†’โˆ’4 (๐‘ฅ โˆ’ 1)(๐‘ฅ + 4)
๐‘ฅโ†’โˆ’4 ๐‘ฅ โˆ’ 1
5
๐‘Ž) lim
๐‘ฅ 2 โˆ’ 4๐‘ฅ
๐‘ฅ(๐‘ฅ โˆ’ 4)
๐‘ฅ
4
= lim
= lim
=
2
๐‘ฅโ†’4 ๐‘ฅ โˆ’ 3๐‘ฅ โˆ’ 4
๐‘ฅโ†’4 (๐‘ฅ โˆ’ 4)(๐‘ฅ + 1)
๐‘ฅโ†’4 ๐‘ฅ + 1
5
๐‘) lim
๐‘) lim
9โˆ’๐‘ฅ
๐‘ฅโ†’9 3 โˆ’
โˆš๐‘ฅ
= lim
๐‘ฅโ†’9
(3 โˆ’ โˆš๐‘ฅ)(3 + โˆš๐‘ฅ)
(3 โˆ’ โˆš๐‘ฅ)
=6
Example 3
Find
4
๐‘ฅโ†’5 ๐‘ฅ โˆ’ 7
a) lim
1
b) lim(2๐‘ง โˆ’ 8)3
๐‘ฅโ†’0
c) lim
โ„Žโ†’0 โˆš5โ„Ž
5
+4+2
๐‘ฅ+3
2
๐‘ฅโ†’โˆ’3 ๐‘ฅ + 4๐‘ฅ + 3
d) lim
๐‘ก 2 + 3๐‘ก + 2
e) lim 2
๐‘กโ†’โˆ’1 ๐‘ก โˆ’ ๐‘ก โˆ’ 2
โˆš๐‘ฅ 2 + 8 โˆ’ 3
๐‘ฅ+1
๐‘ฅโ†’โˆ’1
f) lim
Example 4
Given that lim ๐‘“(๐‘ฅ) = 0 ๐‘Ž๐‘›๐‘‘ lim ๐‘”(๐‘ฅ) = โˆ’3
๐‘ฅโ†’4
Find
a) lim[๐‘”(๐‘ฅ) + 3]
๐‘ฅโ†’4
b) lim [๐‘”(๐‘ฅ)]2
๐‘ฅโ†’4
๐‘) lim ๐‘ฅ๐‘“(๐‘ฅ)
๐‘ฅโ†’4
๐‘”(๐‘ฅ)
๐‘ฅโ†’4 ๐‘“(๐‘ฅ) โˆ’ 1
d) lim
๐‘ฅโ†’4
Example 5
Find
โˆš๐‘ฅ + 4 โˆ’ 2
๐‘ฅ
๐‘ฅโ†’0
a) lim
b)
โˆš๐‘ฅ 2 + 4 โˆ’ 2
๐‘ฅ
๐‘ฅโ†’0
lim
Example 6 Limit of Piecewise Defined Function
1
๐‘ฅ+2
2
๐‘ฅ < โˆ’2
Let ๐‘“(๐‘ฅ) = { ๐‘ฅ โˆ’ 5 โˆ’2 < ๐‘ฅ โ‰ค 3
๐‘ฅ>3
โˆš๐‘ฅ + 13
Find
๐‘Ž) lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’โˆ’2
b) lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’0
c) lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’3
Example 7
๐‘ฅโˆ’1 ๐‘ฅ โ‰ค3
Let ๐‘“(๐‘ฅ) = {
3๐‘ฅ โˆ’ 7 ๐‘ฅ > 3
Find
๐‘Ž) limโˆ’ ๐‘“(๐‘ฅ)
๐‘ฅโ†’3
๐‘) lim+ ๐‘“(๐‘ฅ)
๐‘ฅโ†’3
c) lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’3
Example 8
1 + ๐‘ฅ2
Let ๐‘“(๐‘ฅ) = { 2 โˆ’ ๐‘ฅ
(๐‘ฅ โˆ’ 2)2
๐‘ฅโ‰ค0
0<๐‘ฅโ‰ค2
๐‘ฅ>2
Find
๐‘Ž) lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’0
๐‘) lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’2
Example 9 Find limit or explain why it does not exist.
๐‘ฅ 2 โˆ’ 4๐‘ฅ + 4
a) lim 3
2
๐‘ฅโ†’0 ๐‘ฅ + 5๐‘ฅ โˆ’ 4๐‘ฅ
๐‘ฅ 2 โˆ’ 4๐‘ฅ + 4
b) lim 3
2
๐‘ฅโ†’2 ๐‘ฅ + 5๐‘ฅ โˆ’ 4๐‘ฅ
๐‘ฅ2 + ๐‘ฅ
๐‘) lim 5
๐‘ฅโ†’0 ๐‘ฅ + 2๐‘ฅ 4 + ๐‘ฅ 3
d) lim
๐‘ฅโ†’โˆ’1
e) lim
๐‘ฅโ†’1
๐‘ฅ2 + ๐‘ฅ
๐‘ฅ 5 + 2๐‘ฅ 4 + ๐‘ฅ 3
1 โˆ’ โˆš๐‘ฅ
1โˆ’๐‘ฅ
๐‘ฅ 2 โˆ’ ๐‘Ž2
๐‘“) lim 4
๐‘ฅโ†’๐‘Ž ๐‘ฅ โˆ’ ๐‘Ž4
g) lim
๐‘ฅโ†’0
(๐‘ฅ + โ„Ž)2 โˆ’ ๐‘ฅ 2
โ„Ž
h) lim
โ„Žโ†’0
(๐‘ฅ + โ„Ž)2 โˆ’ ๐‘ฅ 2
โ„Ž
1
1
โˆ’2
2
+
๐‘ฅ
i) lim
๐‘ฅ
๐‘ฅโ†’0
1.5 LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
Limits at infinity are used to describe the behavior of functions as the
independent variable increases or decreases without bound. If a function
approaches a numerical value L in either of these situations, write
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = ๐‘ณ ๐’๐’“
๐’™โ†’โˆ’โˆž
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = ๐‘ณ
๐’™โ†’+โˆž
and ๐‘“(๐‘ฅ) is said to have a horizontal asymptote at ๐’š = ๐‘ณ. A function may
have different horizontal asymptotes in each direction, have a horizontal
asymptote in one direction only, or have no horizontal asymptote.
Example 1
Find the horizontal asymptote for the function:
5๐‘ฅ 2 + 8๐‘ฅ โˆ’ 3
๐‘“(๐‘ฅ) =
3๐‘ฅ 2 + 2
Ans:
lim ๐‘“(๐‘ฅ) =
๐‘ฅโ†’โˆ’โˆž
5
5
๐‘Ž๐‘›๐‘‘ lim ๐‘“(๐‘ฅ) =
๐‘ฅโ†’+โˆž
3
3
5
So the horizontal asymptote is ๐‘ฆ = 3
Example 2: Evaluate
2๐‘ฅ 2 + 3
๐‘ฅโ†’+โˆž ๐‘ฅ 2 โˆ’ 5๐‘ฅ โˆ’ 1
lim
Factor the largest power of ๐‘ฅ in the numerator from each term and the largest power
of ๐‘ฅ in the denominator from each term.
You find that
2๐‘ฅ 2 + 3
๐‘ฅโ†’+โˆž ๐‘ฅ 2 โˆ’ 5๐‘ฅ โˆ’ 1
lim
3
2)
๐‘ฅ
= lim
5 1
๐‘ฅโ†’+โˆž 2
๐‘ฅ (1 โˆ’ ๐‘ฅ โˆ’ 2 )
๐‘ฅ
๐‘ฅ 2 (2 +
2+
= lim
๐‘ฅโ†’+โˆž
3
๐‘ฅ2
5 1
1โˆ’๐‘ฅโˆ’ 2
๐‘ฅ
=
2+0
=2
1โˆ’0โˆ’0
The function has a horizontal asymptote at ๐’š = ๐Ÿ.
Example 3: Evaluate
๐‘ฅ3 โˆ’ 2
lim
๐‘ฅโ†’+โˆž 5๐‘ฅ 4 โˆ’ 3๐‘ฅ 3 + 2๐‘ฅ
The function has a horizontal asymptote at ๐’š = ๐ŸŽ.
Example 4: Evaluate
9๐‘ฅ 2
๐‘ฅโ†’+โˆž ๐‘ฅ + 2
lim
Answer:
Because this limit does not approach a real number value, the function has no horizontal
asymptote as ๐‘ฅ increases without bound.
Limits of Polynomial as ๐’™ โ†’ ±โˆž
๐ฅ๐ข๐ฆ [๐’„๐ŸŽ + ๐’„๐Ÿ ๐’™ + โ‹ฏ + ๐’„๐’ ๐’™๐’ ]= ๐ฅ๐ข๐ฆ ๐’„๐’ ๐’™๐’
๐’™โ†’โˆ’โˆž
๐’™โ†’โˆ’โˆž
๐ฅ๐ข๐ฆ [๐’„๐ŸŽ + ๐’„๐Ÿ ๐’™ + โ‹ฏ + ๐’„๐’ ๐’™๐’ ]= ๐ฅ๐ข๐ฆ ๐’„๐’ ๐’™๐’
๐’™โ†’+โˆž
๐’™โ†’+โˆž
Example 4: Evaluate .
๐‘Ž) lim ๐‘ฅ 3 โˆ’ ๐‘ฅ 2 โˆ’ 3๐‘ฅ
๐‘ฅโ†’โˆ’โˆž
๐‘) lim 5๐‘ฅ 7 โˆ’ ๐‘ฅ 2 โˆ’ 3๐‘ฅ โˆ’ 9
๐‘ฅโ†’โˆ’โˆž
๐‘) lim โˆ’4๐‘ฅ 8 โˆ’ ๐‘ฅ 5 โˆ’ 7๐‘ฅ + 4
๐‘ฅโ†’โˆ’โˆž
Limit laws For Limits at Infinity
๐’
๐ฅ๐ข๐ฆ ๐’Œ๐’‡(๐’™) = ๐’Œ ๐ฅ๐ข๐ฆ ๐’‡(๐’™)
๐ฅ๐ข๐ฆ (๐’‡(๐’™))๐’ = ( ๐ฅ๐ข๐ฆ ๐’‡(๐’™))
๐’™โ†’+โˆž
๐’™โ†’+โˆž
๐’™โ†’+โˆž
๐ฅ๐ข๐ฆ ๐’Œ๐’‡(๐’™) = ๐’Œ ๐ฅ๐ข๐ฆ ๐’‡(๐’™)
๐’
๐ฅ๐ข๐ฆ (๐’‡(๐’™))๐’ = ( ๐ฅ๐ข๐ฆ ๐’‡(๐’™))
๐’™โ†’โˆ’โˆž
๐’™โ†’โˆ’โˆž
๐’™โ†’โˆ’โˆž
Infinite Limit at Infinity
๐ฅ๐ข๐ฆ ๐’‡(๐’™) = ±โˆž
๐’™โ†’โˆ’โˆž
Write limits at infinity for the graph below :
๐‘–)๐‘“(๐‘ฅ) = ๐‘ฅ,
๐’™โ†’+โˆž
๐‘–๐‘–)๐‘“(๐‘ฅ) = ๐‘ฅ 3 ,
๐‘–๐‘–๐‘–) ๐‘“(๐‘ฅ) = ๐‘ฅ 2
๐’™โ†’โˆ’โˆž
Limit at Infinity for Rational Function
Example 5
3๐‘ฅ 5 โˆ’ 2๐‘ฅ 4 + 1
๐‘ฅโ†’+โˆž 1 โˆ’ 5๐‘ฅ 2 + 3๐‘ฅ 2
lim
Ans:
3๐‘ฅ 5
= lim ๐‘ฅ 2 = +โˆž
๐‘ฅโ†’+โˆž 3๐‘ฅ 3
๐‘ฅโ†’+โˆž
lim
Example 6 Limits Involving Radical
Find
3
a) lim โˆš
๐‘ฅโ†’+โˆž
3๐‘ฅ + 5
6๐‘ฅ โˆ’ 8
3 3๐‘  7 โˆ’ 4๐‘  5
b) lim โˆš
๐‘ โ†’+โˆž
2๐‘  7 + 1
Ans:
3 3๐‘  7 โˆ’ 4๐‘  5
3
3๐‘  7 โˆ’ 4๐‘  5 3
3๐‘  7 3 3
โˆš lim
โˆš lim
b) lim โˆš
=
=
=โˆš
๐‘ โ†’+โˆž
๐‘ โ†’+โˆž 2๐‘  7 + 1
๐‘ โ†’+โˆž 2๐‘  7
2๐‘  7 + 1
2
Example 7
Find
โˆš๐‘ฅ 2 + 2
๐‘ฅโ†’+โˆž 3๐‘ฅ โˆ’ 6
๐‘Ž) lim
โˆš๐‘ฅ 2 + 2
๐‘ฅโ†’โˆ’โˆž 3๐‘ฅ โˆ’ 6
๐‘) lim
๐‘) lim
2โˆ’๐‘ฆ
๐‘ฆโ†’โˆ’โˆž โˆš7
+ 6๐‘ฆ 2
๐‘‘) lim โˆš๐‘ฅ 6 + 5 โˆ’ ๐‘ฅ 3
๐‘ฅโ†’+โˆž
๐‘’) lim โˆš๐‘ฅ 6 + 5๐‘ฅ 3 โˆ’ ๐‘ฅ 3
๐‘ฅโ†’+โˆž
๐‘“) lim โˆš๐‘ฅ 2 โˆ’ 3๐‘ฅ โˆ’ ๐‘ฅ
๐‘ฅโ†’+โˆž
Ans:
2โˆ’๐‘ฆ
|๐‘ฆ|
2โˆ’๐‘ฆ
1
โˆ’๐‘ฆ
๐‘) lim
= lim
=
=
๐‘ฆโ†’โˆ’โˆž โˆš7 + 6๐‘ฆ 2
๐‘ฆโ†’โˆ’โˆž โˆš7 + 6๐‘ฆ 2
7
โˆš6
โˆš 2+6
๐‘ฆ
|๐‘ฆ|
2โˆ’๐‘ฆ
๐‘“) lim (โˆš๐‘ฅ 2 โˆ’ 3๐‘ฅ โˆ’ ๐‘ฅ ) ×
๐‘ฅโ†’+โˆž
=
โˆ’3
โˆš1 โˆ’ 3 + 1
๐‘ฅ
=
โˆ’3
2
(โˆš๐‘ฅ 2 โˆ’ 3๐‘ฅ + ๐‘ฅ )
(โˆš๐‘ฅ 2 โˆ’ 3๐‘ฅ + ๐‘ฅ )
=
โˆ’3๐‘ฅ
โˆš๐‘ฅ 2 โˆ’ 3๐‘ฅ + ๐‘ฅ
=
โˆ’3๐‘ฅ
|๐‘ฅ|
2
โˆš๐‘ฅ โˆ’2 3๐‘ฅ + ๐‘ฅ
๐‘ฅ
๐‘ฅ
1.5 LIMITS OF TRIGONOMETRIC FUNCTION
The trigonometric functions sine and cosine have four important limit properties:
lim
x ๏‚ฎ ( ๏ฐ/2) ๏€ซ
tan x ๏€ฝ ๏€ญ ๏‚ฅ
lim cot x ๏€ฝ ๏‚ฅ
x ๏‚ฎ0 ๏€ซ
lim
x ๏‚ฎ ( ๏ฐ/2) ๏€ซ
sec x ๏€ฝ ๏€ญ ๏‚ฅ
lim csc x ๏€ฝ ๏‚ฅ
x ๏‚ฎ0 ๏€ซ
lim
x ๏‚ฎ ( ๏ฐ/2) ๏€ญ
tan x ๏€ฝ ๏‚ฅ
lim cot x ๏€ฝ ๏€ญ ๏‚ฅ
x ๏‚ฎ0 ๏€ญ
lim
x ๏‚ฎ ( ๏ฐ/2) ๏€ญ
sec x ๏€ฝ ๏‚ฅ
lim csc x ๏€ฝ ๏€ญ ๏‚ฅ
x ๏‚ฎ0 ๏€ญ
lim
x ๏‚ฎ ๏€ญ( ๏ฐ/2) ๏€ซ
tan x ๏€ฝ ๏€ญ ๏‚ฅ
lim cot x ๏€ฝ ๏‚ฅ
x๏‚ฎ๏ฐ๏€ซ
lim
x ๏‚ฎ ๏€ญ( ๏ฐ/2) ๏€ซ
sec x ๏€ฝ ๏‚ฅ
lim csc x ๏€ฝ ๏€ญ ๏‚ฅ
x๏‚ฎ๏ฐ๏€ซ
lim
x ๏‚ฎ ๏€ญ( ๏ฐ/2) ๏€ญ
tan x ๏€ฝ ๏‚ฅ
lim cot x ๏€ฝ ๏€ญ ๏‚ฅ
x๏‚ฎ๏ฐ๏€ญ
lim
x ๏‚ฎ ๏€ญ ( ๏ฐ/2) ๏€ญ
sec x ๏€ฝ ๏€ญ ๏‚ฅ
lim csc x ๏€ฝ ๏‚ฅ
x๏‚ฎ๏ฐ๏€ญ
You can use these properties to evaluate many limit problems involving the six basic trigonometric
functions.
Example 1: Evaluate
lim
๐‘ฅโ†’0
.
cos ๐‘ฅ
๐‘ ๐‘–๐‘›๐‘ฅ โˆ’ 3
Substituting 0 for ๐‘ฅ, you find that ๐‘๐‘œ๐‘  ๐‘ฅ approaches 1 and ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ’ 3 approaches โˆ’3; hence,
lim
๐‘ฅโ†’0
cos ๐‘ฅ
1
=โˆ’
๐‘ ๐‘–๐‘›๐‘ฅ โˆ’ 3
3
Example 2: Evaluate
lim cot ๐‘ฅ
๐‘ฅโ†’0+
Because cot x = cos x/sin x, you find
lim+
๐‘ฅโ†’0
cos ๐‘ฅ
๐‘ ๐‘–๐‘›๐‘ฅ
The numerator approaches 1 and the denominator approaches 0 through positive values because
we are approaching 0 in the first quadrant; hence, the function increases without bound and
lim cot ๐‘ฅ = +โˆž
๐‘ฅโ†’0+
and the function has a vertical asymptote at ๐‘ฅ = 0.
Example 3: Evaluate
lim
๐‘ฅโ†’0
sin 4๐‘ฅ
๐‘ฅ
Multiplying the numerator and the denominator by 4 produces
Example 4: Evaluate .
lim
๐‘ฅโ†’0
We can start with
sec x = 1/cos x,
๐‘ ec๐‘ฅ โˆ’ 1
๐‘ฅ
Example 5 : Evaluate
lim
๐‘กโ†’โˆ’3
sin(๐‘ก + 3)
๐‘ก 3 + 3๐‘ก 2
Answer:
Example 6: Evaluate
lim ๐‘ฅ
๐‘ฅโ†’0
cos 2๐‘ฅ
sin 2๐‘ฅ
Example 7 : Evaluate
lim+
๐‘ฅโ†’0
sin ๐‘ฅ
|๐‘ฅ|
lim+
๐‘ฅโ†’0
limโˆ’
๐‘ฅโ†’0
sin ๐‘ฅ
sin ๐‘ฅ
= lim+
=1
๐‘ฅโ†’0
|๐‘ฅ|
๐‘ฅ
sin ๐‘ฅ
sin ๐‘ฅ
= limโˆ’
=โˆ’1
๐‘ฅโ†’0 โˆ’๐‘ฅ
|๐‘ฅ|
So lim+
๐‘ฅโ†’0
sin ๐‘ฅ
๐‘‘๐‘œ๐‘’๐‘  ๐‘›๐‘œ๐‘ก ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก
|๐‘ฅ|
Example 8
Evaluate
lim๐œ‹
๐‘ฅโ†’
2
๐‘ ๐‘–๐‘› ๐‘ฅ
๐‘๐‘œ๐‘  6๐‘ฅ
Example 9
Find
๐‘๐‘œ๐‘  ๐‘ฅ
๐‘ฅโ†’โˆ’๐œ‹ ๐‘๐‘œ๐‘ก ๐‘ฅ
lim
Example 10
Find the lim๐œ‹
๐‘ฅโ†’
2
sin ๐‘ฅ
cos 6๐‘ฅ
Ans:
sin ๐‘ฅ
cos 6๐‘ฅ
lim๐œ‹
๐‘ฅโ†’
2
๐œ‹
2 = 1 = โˆ’1
=
6๐œ‹ โˆ’1
๐‘๐‘œ๐‘  2
๐‘ ๐‘–๐‘›
Example 11
sin 3๐‘ฅ
๐‘ฅโ†’0
๐‘ฅ
lim
Ans:
sin 3๐‘ฅ
(3) = 3
๐‘ฅโ†’0 3๐‘ฅ
lim
Example 12
Find lim
๐‘กโ†’โˆ’3
๐‘ ๐‘–๐‘›(๐‘ก + 3)
๐‘ก 3 + 3๐‘ก 2
Ans:
lim
๐‘ ๐‘–๐‘›(๐‘ก + 3)
๐‘ก 3 + 3๐‘ก 2
lim
๐‘ ๐‘–๐‘›(๐‘ก + 3)
๐‘ก 2 (๐‘ก + 3)
๐‘กโ†’โˆ’3
๐‘กโ†’โˆ’3
1 ๐‘ ๐‘–๐‘›(๐‘ก + 3) 1
= (1)
๐‘กโ†’โˆ’3 ๐‘ก 2 (๐‘ก + 3)
9
lim
Example 13
Find lim ๐‘ฅ cot 2๐‘ฅ
๐‘กโ†’0
Ans:
lim ๐‘ฅ
๐‘กโ†’0
lim
๐‘ฅ
๐‘กโ†’0 2๐‘ฅ
cos 2๐‘ฅ
cos 2๐‘ฅ
sin 2๐‘ฅ
2๐‘ฅ
1
1
= (1)(1) =
sin 2๐‘ฅ 2
2
Example 14
1 โˆ’ cos ๐‘ฅ
๐‘ฅโ†’0
๐‘ฅ2
Find lim
Ans:
1 โˆ’ cos ๐‘ฅ 1 + cos ๐‘ฅ
.
๐‘ฅโ†’0
๐‘ฅ2
1 + cos ๐‘ฅ
lim
1 โˆ’ ๐‘๐‘œ๐‘  2 ๐‘ฅ
๐‘ ๐‘–๐‘›2 ๐‘ฅ
๐‘ ๐‘–๐‘›๐‘ฅ 2
1
1
1
=
lim
=
lim
(
)
= 12 ( ) =
2
2
๐‘ฅโ†’0 ๐‘ฅ (1 + cos ๐‘ฅ)
๐‘ฅโ†’0 ๐‘ฅ (1 + cos ๐‘ฅ)
๐‘ฅโ†’0
๐‘ฅ
1 + ๐‘๐‘œ๐‘ ๐‘ฅ
2
2
lim
Example 15
๐‘ก๐‘Ž๐‘›7๐‘ฅ
๐‘ฅโ†’0 ๐‘ก๐‘Ž๐‘›2๐‘ฅ
Find lim
Example 16
5๐‘ฅ + sin 3๐‘ฅ
๐‘ฅโ†’0 ๐‘ก๐‘Ž๐‘›4๐‘ฅ โˆ’ 7๐‘ฅ๐‘๐‘œ๐‘ 2๐‘ฅ
Find lim
Ans:
1โ„
5๐‘ฅ + sin 3๐‘ฅ
8
๐‘ฅ
.
=โˆ’
๐‘ฅโ†’0 ๐‘ก๐‘Ž๐‘›4๐‘ฅ โˆ’ 7๐‘ฅ๐‘๐‘œ๐‘ 2๐‘ฅ 1โ„
3
๐‘ฅ
lim
Example 17
Find
sin โ„Ž
โ„Žโ†’0 1 โˆ’ cos h
lim
Ans:
sin โ„Ž
โ„Žโ†’0 1 โˆ’ cos h
lim
×
1 + cos h
1 + cos h
1 + cos โ„Ž 2
=
โ„Žโ†’0
sin โ„Ž
0
= lim
๐ท๐‘๐ธ
Example 18
Find
1 โˆ’ cos 3โ„Ž
โ„Žโ†’0 ๐‘๐‘œ๐‘  2 5โ„Ž โˆ’ 1
lim
Ans:
1 โˆ’ cos 3โ„Ž
1 + cos 3โ„Ž ๐‘๐‘œ๐‘  2 5โ„Ž + 1 โˆ’9
×
×
=
โ„Žโ†’0 ๐‘๐‘œ๐‘  2 5โ„Ž โˆ’ 1
๐‘๐‘œ๐‘  2 5โ„Ž + 1 1 + cos 3โ„Ž
50
lim
Example 19
Find
๐‘ ๐‘–๐‘›๐œ‹๐‘ฅ
๐‘ฅโ†’1 ๐‘ฅ โˆ’ 1
lim
Ans:
๐ฟ๐‘’๐‘ก โ„Ž = ๐‘ฅ โˆ’ 1, ๐‘ฅ โ†’ 1, โ„Ž โ†’ 0
๐‘ ๐‘–๐‘›๐œ‹๐‘ฅ
๐‘ฅโ†’1 ๐‘ฅ โˆ’ 1
๐‘ ๐‘–๐‘›๐œ‹(โ„Ž + 1)
sin ๐œ‹๐‘ก๐‘๐‘œ๐‘  ๐œ‹ + ๐‘๐‘œ๐‘ ๐œ‹๐‘ ๐‘–๐‘›๐œ‹
๐‘ ๐‘–๐‘›๐œ‹๐‘ก
๐‘ ๐‘–๐‘›๐œ‹๐‘ก
lim
= lim
= โˆ’ lim
= โˆ’ lim
๐œ‹ = โˆ’๐œ‹
โ„Žโ†’0
โ„Žโ†’0
โ„Žโ†’0
โ„Žโ†’0
โ„Ž
โ„Ž
๐‘ก
๐œ‹๐‘ก
lim
Example 20
๐‘๐‘œ๐‘  ๐‘ฅ
1
= โˆ’
xโ†’0 ๐‘ ๐‘–๐‘›๐‘ฅ โˆ’ 3
3
Find lim
Example 21
Find lim+ ๐‘๐‘œ๐‘  ๐‘ฅ = lim+
xโ†’0
xโ†’0
๐‘๐‘œ๐‘  ๐‘ฅ
= โˆ’โˆž
๐‘ ๐‘–๐‘›๐‘ฅ
1.6 CONTINUITY
A function is said to be continuous on an interval if its graph has no breaks, jumps or holes in that
interval.
Example
๐‘Ž) ๐‘“(๐‘ฅ) = 3๐‘ฅ 3 + 2๐‘ฅ + 1
๐‘) ๐‘“(๐‘ฅ) =
1
๐‘ฅ
Definition of Continuity
The function ๐‘“ is continuous at ๐‘ฅ = ๐‘ if f is defined at ๐‘ฅ = ๐‘ and
lim ๐‘“(๐‘ฅ) = ๐‘“(๐‘)
๐‘ฅโ†’๐‘
The function is continuous on an interval (๐‘Ž, ๐‘) if it is continuous at every point in the interval.
Example 1: Are the functions continuous on the given interval?
๐‘Ž) ๐‘“(๐‘ฅ) = ๐‘ฅ + 2
on โˆ’3 โ‰ค ๐‘ฅ โ‰ค 3
๐‘) ๐‘“(๐‘ฅ) = 2๐‘ฅ
on
0 โ‰ค ๐‘ฅ โ‰ค 10
๐‘) ๐‘“(๐‘ฅ) = ๐‘ฅ 2 + 2
on
0โ‰ค๐‘ฅโ‰ค5
on
2โ‰ค๐‘ฅโ‰ค3
on
0โ‰ค๐‘ฅโ‰ค2
1
๐‘ฅโˆ’1
1
๐‘’) ๐‘“(๐‘ฅ) =
๐‘ฅโˆ’1
๐‘‘) ๐‘“(๐‘ฅ) =
Example 2: Determine whether the following function are continuous at ๐‘ฅ = 2
๐‘Ž) ๐‘“(๐‘ฅ) =
๐‘ฅ2 โˆ’ 4
๐‘ฅโˆ’2
๐‘ฅ2 โˆ’ 4
๐‘) ๐‘”(๐‘ฅ) = { ๐‘ฅ โˆ’ 2 ๐‘ฅ โ‰  2}
3
๐‘ฅ=2
๐‘ฅ2 โˆ’ 4
๐‘) ๐‘”(๐‘ฅ) = { ๐‘ฅ โˆ’ 2 ๐‘ฅ โ‰  2}
4
๐‘ฅ=2
Definition
If a function ๐’‡ is continuous at ๐’™ = ๐’‚ then we must have the following three
conditions.
1. ๐’‡(๐’‚) is defined; in other words, ๐’‚ is in the domain of ๐’‡.
Example 1
The function
๐‘ฅ2 โˆ’ 9
๐‘“(๐‘ฅ) =
๐‘ฅโˆ’3
fails to be continuous at ๐’™ = ๐Ÿ‘ since ๐Ÿ‘ is not in the domain of ๐’‡.
Condition 1 is not true.
Example 2
The function
1
๐‘–๐‘“
๐‘”(๐‘ฅ) = {๐‘ฅ
2 ๐‘–๐‘“
fails to be continuous at ๐’™ = ๐ŸŽ since the limit
๐‘ฅโ‰ 0
๐‘ฅ=0
lim ๐‘”(๐‘ฅ) does not exist, therefore Condition 2 is not true.
๐‘ฅโ†’0
Example 3
The function
๐‘ฅ2 โˆ’ 9
โ„Ž(๐‘ฅ) = { ๐‘ฅ โˆ’ 3
7
๐‘–๐‘“
๐‘ฅโ‰ 3
๐‘–๐‘“
๐‘ฅ=3
does satisfy condition 1 since 3 is in the domain of ๐’‰, ๐’‰(๐Ÿ‘) = ๐Ÿ•, and does satisfy condition 2
since
(๐‘ฅ โˆ’ 3)(๐‘ฅ + 3)
๐‘ฅ2 โˆ’ 9
= lim
= lim ๐‘ฅ + 3 = 6
๐‘ฅโ†’3 ๐‘ฅ โˆ’ 3
๐‘ฅโ†’3
๐‘ฅโ†’3
๐‘ฅโˆ’3
lim
does exist.
However, since these two numbers are different, condition 3 is violated and ๐’‰(๐’™) fails to be
continuous at ๐’™ = ๐Ÿ‘.
Example 4:
Determine whether the function below is continuous.
๐‘ฅ3 + 2
๐‘ฅ โ‰ค โˆ’1
2
๐‘“(๐‘ฅ) = {๐‘ฅ + ๐‘ฅ + 1 โˆ’1 < ๐‘ฅ < 1}
๐‘ฅ4 + 1
๐‘ฅโ‰ฅ1
Ans:
๐‘ฅ is continuous at ๐‘ฅ = โˆ’1
๐‘ฅ is discontinuous at ๐‘ฅ = 1
Example 5:
2๐‘ฅ 3 + 16
Given ๐‘“(๐‘ฅ) = {๐‘ฅ 2 + ๐‘๐‘ฅ + ๐‘
3๐‘ฅ 4 โˆ’ 48
๐‘ฅ โ‰ค โˆ’2
โˆ’2 < ๐‘ฅ < 2}
๐‘ฅโ‰ฅ2
Find ๐’ƒ and ๐’„ such that ๐’‡(๐’™) is continuous everywhere
Ans: ๐‘ = 0, ๐‘ = โˆ’4
TUTORIAL
1.2 CALCULATING LIMIT USING LIMIT LAW
โˆš๐‘ฅ โˆ’ 3
๐‘ฅโ†’9 ๐‘ฅ โˆ’ 9
1) Find lim
2) Find
lim
๐‘ฅโ†’4
4๐‘ฅ โˆ’ ๐‘ฅ 2
2 โˆ’ โˆš๐‘ฅ
โˆš๐‘ฅ 2 + 12 โˆ’ 4
๐‘ฅโ†’2
๐‘ฅโˆ’2
3)Find lim
๐‘ข4 โˆ’ 1
๐‘ขโ†’1 ๐‘ข 3 โˆ’ 1
4)Find lim
5) ๐‘†uppose the lim ๐‘“(๐‘ฅ) = 1 and lim ๐‘”(๐‘ฅ) = โˆ’5 , show that lim
๐‘ฅโ†’0
๐‘ฅโ†’0
๐‘ฅโ†’0
2 ๐‘“(๐‘ฅ) โˆ’ ๐‘”(๐‘ฅ)
(๐‘“(๐‘ฅ) +
2
7)3
=
7
4
๐‘ฃ3 โˆ’ 8
๐‘ฃโ†’2 ๐‘ฃ 4 โˆ’ 16
6) Find lim
5
โˆš5โ„Ž(๐‘ฅ)
=
๐‘ฅโ†’1 ๐‘(๐‘ฅ)(4 โˆ’ ๐‘Ÿ(๐‘ฅ))
2
7) Suppose lim โ„Ž(๐‘ฅ) = 5and lim ๐‘(๐‘ฅ) = 1 , show that lim
๐‘ฅโ†’1
๐‘ฅโ†’1
8) Suppose
lim ๐‘“(๐‘ฅ) = 7 and lim ๐‘”(๐‘ฅ) = โˆ’3 , find
๐‘ฅโ†’๐‘
๐‘ฅโ†’๐‘
a) lim (๐‘“(๐‘ฅ) + ๐‘”(๐‘ฅ))
๐‘ฅโ†’๐‘
b) lim ๐‘“(๐‘ฅ)๐‘”(๐‘ฅ)
๐‘ฅโ†’๐‘
c) lim 4๐‘”(๐‘ฅ)
๐‘ฅโ†’๐‘
๐‘“(๐‘ฅ)
๐‘ฅโ†’๐‘ ๐‘”(๐‘ฅ)
d) lim
9) If lim
๐‘ฅโ†’4
๐‘“(๐‘ฅ) โˆ’ 5
= 1, find lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’4
๐‘ฅโˆ’2
10) Suppose lim ๐‘(๐‘ฅ) = 4 , lim ๐‘Ÿ(๐‘ฅ) = 0 and lim ๐‘ (๐‘ฅ) = โˆ’3 , find
๐‘ฅโ†’โˆ’2
a) lim
๐‘ฅโ†’โˆ’2
๐‘ฅโ†’โˆ’2
(๐‘(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) + ๐‘ (๐‘ฅ))
b) lim
๐‘(๐‘ฅ)๐‘Ÿ(๐‘ฅ)๐‘ (๐‘ฅ)
c) lim
4๐‘ (๐‘ฅ)
d) lim
(โˆ’4๐‘(๐‘ฅ) + 5๐‘Ÿ(๐‘ฅ))
๐‘ (๐‘ฅ)
๐‘ฅโ†’โˆ’2
๐‘ฅโ†’โˆ’2
๐‘ฅโ†’โˆ’2
๐‘ฅโ†’โˆ’2
๐‘“(๐‘ฅ)
= 1, find
2
๐‘ฅโ†’โˆ’2 ๐‘ฅ
11) If lim
,
๐‘Ž)
๐‘)
lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’โˆ’2
lim
๐‘ฅโ†’โˆ’2
๐‘“(๐‘ฅ)
๐‘ฅ
12) If
๐‘“(๐‘ฅ)
= 1, find
2
๐‘ฅโ†’0 ๐‘ฅ
lim
a)
lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’0
๐‘“(๐‘ฅ)
๐‘ฅโ†’0 ๐‘ฅ
b) lim
13)
๐‘Ž) If
๐‘“(๐‘ฅ) โˆ’ 5
= 3, find lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 2
๐‘ฅโ†’2
lim
๐‘“(๐‘ฅ) โˆ’ 5
= 4, ๐‘“๐‘–๐‘›๐‘‘ lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’2 ๐‘ฅ โˆ’ 2
๐‘ฅโ†’2
๐‘) If lim
Ans:
1) 1/6
2)
3) ½
4)
5) 7/4
1.3 INFINITE LIMIT AND VERTICAL ASYMPTOTES
Using limits , identify vertical asymptote for the function below:
๐‘Ž) ๐‘“(๐‘ฅ) =
๐‘ฅ2 โˆ’ 2
๐‘ฅโˆ’2
๐‘ฅ3 โˆ’ ๐‘ฅ + 3
๐‘) ๐‘”(๐‘ฅ) =
๐‘ฅ
๐‘) ๐‘“(๐‘ฅ) =
๐‘‘) โ„Ž(๐‘ฅ) =
โˆ’๐‘ฅ 3 + 3๐‘ฅ 2 + ๐‘ฅ โˆ’ 1
๐‘ฅโˆ’3
๐‘ฅ5 โˆ’ ๐‘ฅ3 + 3
๐‘ฅ2 โˆ’ 1
1.4 FIND LIMITS AT INFINITY
3๐‘ฅ + 1
๐‘ฅโ†’+โˆž 2๐‘ฅ โˆ’ 5
6) lim
3๐‘ฅ + 7
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ 2 โˆ’ 2
7) lim
๐‘ฅโˆ’2
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ 2 + 2๐‘ฅ + 1
8) lim
3 2 + 3๐‘ฅ โˆ’ 5๐‘ฅ 2
9) lim โˆš
๐‘ฅโ†’โˆ’โˆž
1 + 8๐‘ฅ 2
11) lim
2โˆ’๐‘ฆ
๐‘ฆโ†’โˆ’โˆž โˆš7 +
6๐‘ฆ 2
โˆš5๐‘ฅ 2 โˆ’ 2
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ + 3
12) lim
6 โˆ’ ๐‘ก3
๐‘กโ†’โˆ’โˆž 7๐‘ก 3 + 3
13) lim
โˆš3๐‘ฅ 4 + ๐‘ฅ
๐‘ฅโ†’โˆ’โˆž ๐‘ฅ 2 โˆ’ 8
14) lim
15) lim (โˆš๐‘ฅ 2 โˆ’ ๐‘ฅ โˆ’ ๐‘ฅ)
๐‘ฅโ†’+โˆž
๐‘ฅ + 4๐‘ฅ 3
๐‘ฅโ†’โˆ’โˆž 1 โˆ’ ๐‘ฅ 2 + 7๐‘ฅ 3
16) lim
17) lim (โˆš๐‘ฅ 2 + ๐‘Ž๐‘ฅ โˆ’ ๐‘ฅ)
๐‘ฅโ†’+โˆž
18) lim (โˆš๐‘ฅ 2 + ๐‘Ž๐‘ฅ โˆ’ โˆš๐‘ฅ 2 + ๐‘๐‘ฅ)
๐‘ฅโ†’+โˆž
19) lim (โˆš๐‘ฅ 2 โˆ’ 3๐‘ฅ โˆ’ ๐‘ฅ)
๐‘ฅโ†’+โˆž
Ans:
1) (a)2,1 (b) no lim+ ๐‘“(๐‘ฅ) โ‰  limโˆ’ ๐‘“(๐‘ฅ)
๐‘ฅโ†’2
3) (a)graph (b)1,1 (c)yes, 1
๐‘ฅโ†’2
(c)3,3
(d)yes 3
5) ๐‘Ž) โˆš3, c) 1, e)
2
, g) 1, i) โˆš2
โˆš5
6)3/2
7)0
3
9)โˆ’ โˆš5
1
โˆš6
11)
13)โˆ’1/7
15)0
17)๐‘Ž/2
1.5 LIMIT OF TRIGONOMETRY FUNCTION
๐œƒ2
๐œƒโ†’0 1 โˆ’ ๐‘๐‘œ๐‘ ๐œƒ
1) lim
1 โˆ’ ๐‘๐‘œ๐‘ 3โ„Ž
2
โ„Žโ†’0 ๐‘๐‘œ๐‘  5โ„Ž โˆ’ 1
2) lim
2 โˆ’ ๐‘๐‘œ๐‘ 3๐‘ฅ โˆ’ ๐‘๐‘œ๐‘ 4๐‘ฅ
๐‘ฅ
๐‘ฅโ†’0
3) lim
๐‘ก๐‘Ž๐‘›3๐‘ฅ 2 + ๐‘ ๐‘–๐‘›2 5๐‘ฅ
4) lim
๐‘ฅ2
๐‘ฅโ†’0
tan ๐‘Ž๐‘ฅ
, ๐‘Ž โ‰  0, ๐‘ โ‰  0
๐‘ฅโ†’0 sin ๐‘Ž๐‘ฅ
5) lim
๐‘ฅ 2 โˆ’ 3๐‘ ๐‘–๐‘›๐‘ฅ
๐‘ฅ
๐‘ฅโ†’0
6) lim
๐œ‹โˆ’๐‘ฅ
;
๐‘ฅโ†’๐œ‹ ๐‘ ๐‘–๐‘›๐‘ฅ
7) lim
๐ป๐‘–๐‘›๐‘ก: ๐ฟ๐‘’๐‘ก ๐‘ก =
1
1
8) lim ๐‘ฅ (1 โˆ’ ๐‘๐‘œ๐‘  ) ; ๐‘ก =
๐‘ฅโ†’โˆ’โˆž
๐‘ฅ
๐‘ฅ
sin(๐œ‹๐‘ฅ)
๐‘ฅโ†’1 ๐‘ฅ โˆ’ 1
9) lim
๐œ‹ ๐œ‹
โˆ’
2 ๐‘ฅ
10) lim๐œ‹
๐‘ฅโ†’
Ans:
1) 2
2)
3) 0
4)
5) a/b
6)
7) 1
8)
9) โ€“๐œ‹
10)
4
๐‘ก๐‘Ž๐‘›๐‘ฅ โˆ’ 1
๐‘ฅ โˆ’ ๐œ‹โ„4
1.6 CONTINUITY
1. Graph the function, then discuss limits, one sided limits, and continuity of ๐‘“
at ๐‘ฅ = โˆ’1,0 ๐‘Ž๐‘›๐‘‘ 1.
1
โˆ’๐‘ฅ
๐‘Ž) ๐‘“(๐‘ฅ) = 1
โˆ’๐‘ฅ
{1
0
1
๐‘) ๐‘“(๐‘ฅ) = ๐‘ฅ
0
{1
๐‘–๐‘“
๐‘–๐‘“
๐‘–๐‘“
๐‘–๐‘“
๐‘–๐‘“
๐‘ฅ โ‰ค โˆ’1
โˆ’1 < ๐‘ฅ < 0
๐‘ฅ=0
0<๐‘ฅ<1
๐‘ฅโ‰ฅ1
๐‘–๐‘“
๐‘ฅ โ‰ค โˆ’1
๐‘–๐‘“
0 < |๐‘ฅ| < 1
๐‘–๐‘“
๐‘–๐‘“
๐‘ฅ=1
๐‘ฅ>1
2. At which points do the functions in exercises continuous.
๐‘Ž) ๐‘ฆ =
1
โˆ’ 3๐‘ฅ
๐‘ฅโˆ’2
๐‘Ž๐‘›๐‘ : ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก ๐‘Ž๐‘ก ๐‘ฅ = 2
๐‘) ๐‘ฆ =
1
+4
(๐‘ฅ + 2)2
๐‘) ๐‘ฆ =
๐‘ฅ2
๐‘ฅ+1
โˆ’ 4๐‘ฅ + 3
๐‘Ž๐‘›๐‘ : ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก ๐‘ฅ = 3
๐‘ฅ2
๐‘ฅ+3
โˆ’ 3๐‘ฅ โˆ’ 1
๐‘Ž๐‘›๐‘ : ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก ๐‘ฅ = 5 , ๐‘ฅ = 2
๐‘‘) ๐‘ฆ =
๐‘’)
๐‘ฆ=
1
๐‘ฅ2
โˆ’
|๐‘ฅ| + 1 2
๐‘“) ๐‘ฆ = โˆš2๐‘ฅ + 3
4
๐‘”) ๐‘ฆ = โˆš3๐‘ฅ โˆ’ 1
๐‘Ž๐‘›๐‘ : ๐‘’๐‘ฅ๐‘๐‘’๐‘๐‘ก ๐‘Ž๐‘ก ๐‘ฅ = 2
ans: continuous everywhere
๐‘Ž๐‘›๐‘ :
all x โ‰ฅ โˆ’3/2
๐‘Ž๐‘›๐‘ : ๐‘ฅ โ‰ฅ
1
3
1โ„
3
โ„Ž) ๐‘ฆ = (2๐‘ฅ โˆ’ 1)
๐‘Ž๐‘›๐‘ : ๐‘Ž๐‘™๐‘™ ๐‘ฅ
1โ„
5
๐‘–) ๐‘ฆ = (2 โˆ’ ๐‘ฅ)
๐‘Ž๐‘›๐‘ : ๐‘Ž๐‘™๐‘™ ๐‘ฅ
3. For what value of a is ๐‘“(๐‘ฅ) = {
๐‘ฅ2 โˆ’ 1
2๐‘Ž๐‘ฅ
4. For what value of a is ๐‘“(๐‘ฅ) = {
๐‘ฅ
๐‘๐‘ฅ 2
๐‘–๐‘“
๐‘–๐‘“
๐‘–๐‘“
๐‘–๐‘“
๐‘ฅ<3
, continuous at every ๐‘ฅ?
๐‘ฅโ‰ฅ3
Ans: 4/3
๐‘ฅ < โˆ’2
, continuous at every ๐‘ฅ?
๐‘ฅ โ‰ฅ โˆ’2
Ans: -1/2
5. Discuss limits, one sided limits, and continuity of ๐‘“
at ๐‘ฅ = 0, 1 ๐‘Ž๐‘›๐‘‘ 2.
11
f(x)=(x^2)-1
f(x)=2x
f(x)=-2x+4
10
f(x)=0
Series 1
9
8
7
6
5
4
3
2
1
x
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-1
-2
-3
2
3
4
5
6
7
8
9
10
11
ADDITIONAL QUESTIONS
Limits and Continuity
1.
Find the limits:-
(๐‘Ž)
(๐‘)
โˆ’3x 4 โˆ’ 1
lim
x โ†’ โˆ’โˆž ๐‘ฅ 2 (๐‘ฅ โˆ’ 1)
โˆšx 2 (โˆš2(x 2 + 4)
lim
(
)
๐‘ฅโ†’2
3x 2 โˆ’ 4
Ans: +โˆž , 1
2.
Given ๐‘“(๐‘ฅ) is a function defined by
๐‘ฅโ‰ค1
๐‘ฅ๐‘ฅ 2 + a
๐‘“(๐‘ฅ) = {๐‘š๐‘š๐‘ฅ + ๐‘ 1 < ๐‘ฅ โ‰ค 3
๐‘ฅ>3
2๐‘ฅ 2
(a)
(b)
Determine the value of ๐‘Ž if
Evaluate ๐‘š and ๐‘ if
lim
๐‘“(๐‘ฅ) = 6 .
๐‘ฅ โ†’ 1โˆ’
lim
lim
๐‘“(๐‘ฅ) and
๐‘“(๐‘ฅ) exist.
๐‘ฅโ†’1
๐‘ฅโ†’3
Ans: ๐’‚ = ๐Ÿ“, ๐’Ž = ๐Ÿ”, ๐’„ = ๐ŸŽ
3.
Evaluate the limit.
lim 1 โˆ’ cos 7k
๐‘˜ โ†’ 0 cos 5๐‘˜ โˆ’ 1
Ans: โˆ’
๐Ÿ’๐Ÿ—
๐Ÿ๐Ÿ“
4. Evaluate the limit
lim
3๐‘ฅ + 1
๐‘ฅโ†’โˆ’โˆž โˆš๐‘ฅ 2
+1
Ans: 3
5. Find the value of the following limit:
limโˆ’
๐‘ฅโ†’1
โˆš2๐‘ฅ (๐‘ฅ โˆ’ 1)
|๐‘ฅ โˆ’ 1|
Ans: โˆ’โˆš๐Ÿ
6. Find the value of k, if possible, that will make the function below
continuous everywhere.
๐‘ฅ + 2๐‘˜,
๐‘ฅโ‰ค1
๐‘“(๐‘ฅ) = {
๐‘˜๐‘ฅ 2 + ๐‘ฅ + 1, ๐‘ฅ > 1
Ans: k = 1
7. Find values of x at which f is not continuous
๏ƒฌ
๏ƒฏ3 ๏€ญ x, 0 ๏‚ฃ x ๏€ผ 2
๏ƒฏ
๏ƒฏ 4x ๏€ญ1
f ( x) ๏€ฝ ๏ƒญ
, 2๏‚ฃ x๏€ผ4
๏ƒฏ x ๏€ญ1
๏ƒฏ 15
๏ƒฏ๏ƒฎ 7 ๏€ญ x , 4 ๏€ผ x ๏€ผ 7
Ans:
๐’…๐’Š๐’”๐’„๐’๐’๐’•๐’Š๐’๐’๐’–๐’” ๐’‚๐’• ๐’™ = ๐Ÿ ๐’‚๐’๐’… ๐’™ = ๐Ÿ’
8. Find the interval at which
๐‘“(๐‘ฅ) =
(๐‘ฅ โˆ’ 1)2
๐‘ฅ2 โˆ’ 1
is continuous.
Ans: (โˆ’โˆž, โˆ’๐Ÿ) โˆช (โˆ’๐Ÿ, ๐Ÿ) โˆช (๐Ÿ, +โˆž)
9 . Evaluate the limit if exist:
lim๐œ‹
๐‘ฅโ†’
3
๐‘ ๐‘–๐‘›(๐‘ฅ โˆ’ ๐œ‹3)
2
(๐‘ฅ โˆ’ ๐œ‹3)
Ans: does not exist
10. Given f ๏€จx ๏€ฉ ๏€ฝ
3๏€ญ x
x2 ๏€ญ 9
. Evaluate:
(a) lim ๏€ญ f ๏€จx ๏€ฉ
{ans: 1/6}
(b) lim ๏€ซ f ๏€จx ๏€ฉ
{ans: -1/6}
(c) lim f ๏€จx ๏€ฉ
{ans: DNE}
x๏‚ฎ3
x๏‚ฎ3
x๏‚ฎ3
11. lim
x ๏‚ฎ1
x ๏€ญ1
๏€จ1 ๏€ญ x ๏€ฉ๏€จ
๏€ฉ
x ๏€ซ1
{ans: -1/4}
2 ๏€ซ x ๏€ซ x2
does not exist.
x ๏‚ฎ 2 4 ๏€ซ 2x ๏€ญ 2x 2
12. Explain why lim
13
lim
x ๏‚ฎ ๏€ซ๏‚ฅ
x 2 ๏€ญ 2x ๏€ญ 1 ๏€ญ x 2 ๏€ญ 7x ๏€ซ 3
{ans: 5/2}
๏ƒฌ2 x 2 ๏€ญ a ,
x ๏‚ฃ1
๏ƒฏ
14. If f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ bx ๏€ซ c, 1 ๏€ผ x ๏‚ฃ 3
๏ƒฏ x3 ,
x๏€พ3
๏ƒฎ
(a) Determine the value of a if lim ๏€ญ f ๏€จx ๏€ฉ ๏€ฝ ๏€ญ5.
{ans: 7}
(b) Evaluate b and c if lim f ๏€จx ๏€ฉ and lim f ๏€จx ๏€ฉ exist.
{ans: b=16, c=-21}
x ๏‚ฎ1
x ๏‚ฎ1
x๏‚ฎ3
15. Determine whether f is continuous at x = 1 if
๏ƒฌ x ๏€ญ1
๏ƒฏ x ๏€ญ1 , x ๏€ผ 1
๏ƒฏ
f ๏€จx ๏€ฉ ๏€ฝ ๏ƒญ ๏€ญ 1,
x ๏€ฝ1
๏ƒฏ2 ๏€ญ 3 x , x ๏€พ 1
๏ƒฏ
๏ƒฎ
{ans: continuous}
16.
๏ƒฌ x2 ,
0๏€ผ x๏€ผ2
๏ƒฏ
f ๏€จ x ๏€ฉ ๏€ฝ ๏ƒญ x ๏€ซ 2, 2 ๏€ผ x ๏€ผ 4
๏ƒฏ2ax ๏€ญ 7,
x๏‚ณ4
๏ƒฎ
Given
(a) Determine whether lim f ๏€จx ๏€ฉ exist.
x๏‚ฎ2
{ans: exists}
(b) Is f continuous at x = 2? Why?
{ans: not continuous}
(c) What is the value of a if f is continuous at x = 4?
{ans: 13/8}
๏ƒฆ๏ฑ ๏ƒถ
๏ƒท
๏ƒจx๏ƒธ
{ans: ๏ฑ }
17. Evaluate: lim x sin ๏ƒง
x ๏‚ฎ ๏€ซ๏‚ฅ
18. Evaluate: lim
t๏‚ฎ0
19. Evaluate:
20. Given
Evaluate:
cos t ๏€ญ 1
t2
lim1
๐‘ฅโ†’
โˆš2
{ans: -1/2}
4๐‘ฅ 2 โˆ’ 2
8๐‘ฅ 3
โˆ’ โˆš8
|2 + 3๐‘ฅ โˆ’ 2๐‘ฅ 2 |
๐‘“(๐‘ฅ) =
+ 2๐‘ฅ โˆ’ 1
2๐‘ฅ โˆ’ 4
{ ๐‘Ž๐‘›๐‘ :
โˆš2
}
4
๐‘ฅ โ†’2+
(b)
๐‘ฅ โ†’2โˆ’
(c)
21. Evaluate:
11
}
2
1
{ ๐‘Ž๐‘›๐‘ : }
2
{ ๐‘Ž๐‘›๐‘ : ๐ท๐‘๐ธ }
lim ๐‘“(๐‘ฅ)
(a)
{ ๐‘Ž๐‘›๐‘ :
lim ๐‘“(๐‘ฅ)
lim ๐‘“(๐‘ฅ)
๐‘ฅโ†’2
lim
๐‘ฅโ†’0
โˆš๐‘ฅ + ๐‘˜ โˆ’ โˆš๐‘˜
2 โˆ’ โˆš๐‘ฅ + 4
{ ๐‘Ž๐‘›๐‘ : โˆ’
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘˜ ๐‘–๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
2โˆ’๐‘ก
is +โˆž, โˆ’โˆž, or does not exist.
๐‘ก โ†’ โˆ’2 ๐‘ก 2 โˆ’ 4
Give reason for your answer.
22. Determine whether
23. Evaluate:
2
โˆš๐‘˜
}
lim
lim โˆš2๐‘ฅ 2 โˆ’ โˆš2๐‘ฅ 2 โˆ’ 6๐‘ฅ
{ ๐‘Ž๐‘›๐‘ : ๐ท๐‘๐ธ }
{ ๐‘Ž๐‘›๐‘ :
๐‘ฅ โ†’ +โˆž
3
โˆš2
}
24. Given:
๐‘๐‘ฅ 3 โˆ’ 8,
๐‘“(๐‘ฅ) = {๐‘‘,
2๐‘ฅ 2 + ๐‘,
if lim ๐‘“(๐‘ฅ) exists, find the value of ๐‘.
๐‘ฅ<3
๐‘ฅ=3
๐‘ฅ>3
๐‘ฅโ†’3
Hence, if f is continuous at x = 3, find d.
{ ๐‘Ž๐‘›๐‘ : ๐‘ = 1, ๐‘‘ = 19 }
25. Given:
๐‘ฅ 2 + 3๐‘ฅ โˆ’ 10
,
๐‘ฅ<2
|๐‘ฅ โˆ’ 2|
๐‘“(๐‘ฅ) = ๐‘,
๐‘ฅ=2
5๐‘ฅ โˆ’ ๐‘ž,
2<๐‘ฅ<3
{ ๐‘Ÿ,
๐‘ฅ>3
(a) If f is continuous at x =2, find p and q.
(b) Find r if f is discontinuous at x = 3.
{ ๐‘Ž๐‘›๐‘ : ๐‘ = โˆ’7, ๐‘ž = 17 }
{ ๐‘Ž๐‘›๐‘ : ๐‘Ÿ โ‰  โˆ’2 }
26. Determine the intervals of x where h is continuous.
โˆš๐‘ฅ 2 โˆ’ 9
โ„Ž(๐‘ฅ) =
(3 โˆ’ ๐‘ฅ)(๐‘ฅ + 5)
{ ๐‘Ž๐‘›๐‘ : (โˆ’โˆž, โˆ’5) โˆช (โˆ’5, โˆ’3] โˆช (3, +โˆž) }
27. Evaluate: lim
tan 8๐œƒ
sin 4๐œƒ
28. Evaluate:
cos ๐‘ฅ โˆ’ 1
๐‘ฅ2
๐œƒโ†’0
lim
๐‘ฅโ†’0
{ ๐‘Ž๐‘›๐‘ : 2 }
1
{ ๐‘Ž๐‘›๐‘ : โˆ’ }
2