Limit and Continuity
1.1 Definition of Limit
1.2 One sided Limit
1.3 Infinite limit and Vertical Asymptotes
1.4 Calculating Limit using Limit Law
1.5 Limit at Infinity and Horizontal Asymptotes
1.5 Limit of Trigonometric Function
1.6 Continuity
1 LIMIT AND CONTINUITY
1.1 DEFINITION OF LIMIT
The most basic use of limits is to describe how a function behaves as the independent variable
approaches a given value. Here we intend to give numerical and graphical approaches to the
concept of limit using examples
Let ๐(๐ฅ) = 2 ๐ฅ + 2 and compute ๐(๐ฅ) as ๐ฅ takes values closer to 1. We first consider
values of ๐ฅ approaching 1 from the left (๐ฅ < 1).
Solution
๐ฅ
๐(๐ฅ)
0.5
3
0.8
3.6
0.9
3.8
0.95
3.9
0.99
3.98
0.999
3.998
0.9999
3.9998
0.99999
3.99998
We now consider ๐ฅ approaching 1 from the right (๐ฅ > 1).
๐ฅ
๐(๐ฅ)
1.5
5
1.2
4.4
1.1
4.2
1.05
4.1
1.01
4.02
1.001
4.002
1.0001
4.0002
1.00001
4.00002
In both cases as ๐ฅ approaches 1, ๐(๐ฅ) approaches 4. Intuitively, we say that
lim ๐(๐ฅ) = 4
๐ฅโ1
.
LIMIT (DEFINITION)
We are talking about the values that ๐(๐ฅ) takes when ๐ฅ gets closer to 1 and not ๐(1).
If the values of ๐(๐ฅ) can be made as close as we like to ๐ฟ by taking values of ๐ฅ
sufficiently close to ๐
(but not equal to ๐), then we write
lim ๐(๐ฅ) = ๐ฟ
๐ฅโ๐
Which is read โthe limit of ๐(๐ฅ) as x approaches a is ๐ฟโ or โ ๐(๐ฅ) approaches ๐ฟ
as ๐ฅ approaches ๐. the expression ๐(๐ฅ) โ ๐ฟ ๐๐ ๐ฅ โ ๐ .
Example 1
For the functions below, graph and find
lim ๐(๐ฅ)
๐ฅโ1
๐)
๐)
๐)
Solution
Example 2
๐(๐ฅ) =
๐ฅ2 โ 1
๐ฅโ1
๐ฅ2 โ 1
๐(๐ฅ) = { ๐ฅ โ 1 ,
1,
โ(๐ฅ) = ๐ฅ + 1
๐ฅโ 1
๐ฅ=1
Discuss the behavior of the following function as ๐ฅ โ 0
๐)
๐)
0, ๐ฅ < 0
๐(๐ฅ) = {
1, ๐ฅ โฅ 0
1
โ(๐ฅ) = {๐ฅ , ๐ฅ โ 0
0, ๐ฅ = 0
Solution
a)
b)
Example 3
For the function ๐(๐ก), find the following limits or explain why they donโt exist.
๐)
๐)
๐)
lim ๐(๐ก)
๐กโโ2
lim ๐(๐ก)
๐กโโ1
lim ๐(๐ก)
๐กโ0
Example 4
Which of the following statements about the function ๐ฆ = ๐(๐ฅ) graphed here are true and which are
false?
a) lim ๐(๐ฅ) ๐๐ฅ๐๐ ๐ก
๐ฅโ0
b)
lim ๐(๐ฅ) = 1
๐ฅโ0
c)
lim ๐(๐ฅ) = 0
๐ฅโ0
d)
lim ๐(๐ฅ) = 1
๐ฅโ1
e)
lim ๐(๐ฅ) = 0
๐ฅโ1
Example 5
Explain why the limit s do not exist
๐ฅ
๐ฅโ0 |๐ฅ|
๐) lim
b)
1
๐ฅโ1 ๐ฅ โ 1
lim
1.2 ONE SIDED LIMIT
For some functions, it is appropriate to look at their behavior from one side only. If x
approaches c from the right only, you write
๐ฅ๐ข๐ฆ ๐(๐ฑ)
๐ฑโ๐ +
or if x approaches c from the left only, you write
๐ฅ๐ข๐ฆ ๐(๐ฑ)
๐ฑโ๐ โ
It follows, then, that
๐ฅ๐ข๐ฆ ๐(๐ฑ) = ๐
๐ฑโ๐
if and only if
๐ฅ๐ข๐ฆ ๐(๐) = ๐ฅ๐ข๐ฆโ ๐(๐) = ๐ณ
๐โ๐+
๐โ๐
Example 1: Evaluate
lim โ๐ฅ
๐ฅโ0+
Because ๐ฅ is approaching 0 from the right, it is always positive;โ๐ฅ is getting closer and closer to
zero, so
lim+ โ๐ฅ = 0
๐ฅโ0
Although substituting 0 for ๐ฅ would yield the same answer, the next example illustrates why this
technique is not always appropriate.
Example 2: Evaluate
lim โ๐ฅ
๐ฅโ0โ
Because ๐ฅ is approaching 0 from the left, it is always negative, and โ๐ฅ does not exist. In this
situation,
limโ โ๐ฅ
๐ฅโ0
DNE. Also, note that the two sided limit
lim โ๐ฅ
๐ฅโ0
๐๐๐๐ ๐๐๐ก ๐๐ฅ๐๐ ๐ก ๐๐๐๐๐ข๐ ๐ limโ โ๐ฅ = 0 โ limโ โ๐ฅ
Please refer to the function ๐(๐ฅ) = โ๐ฅ below:
๐ฅโ0
๐ฅโ0
Example 3: Evaluate
๐) limโ
|๐ฅ โ 2|
๐ฅโ2
๐) lim+
|๐ฅ โ 2|
๐ฅโ2
๐ฅโ2
๐ฅโ2
|๐ฅ โ 2|
๐ฅโ2 ๐ฅ โ 2
๐) lim
Ans:
a) As ๐ฅ approaches 2 from the left, ๐ฅ โ 2 is negative, and | ๐ฅ โ 2| = โ ( ๐ฅ โ 2); hence,
lim
๐ฅโ2โ
|๐ฅ โ 2| โ(๐ฅ โ 2)
=
= โ1
๐ฅโ2
๐ฅโ2
b) As ๐ฅ approaches 2 from the right, ๐ฅ โ 2 is positive, and | ๐ฅ โ 2| = ๐ฅ โ 2; hence;
|๐ฅ โ 2| (๐ฅ โ 2)
lim+
=
=1
๐ฅโ2 ๐ฅ โ 2
๐ฅโ2
c) Because
limโ
๐ฅโ2
|๐ฅ โ 2|
|๐ฅ โ 2|
โ lim+
๐ฅโ2 ๐ฅ โ 2
๐ฅโ2
|๐ฅ โ 2|
Does Not Exist
๐ฅโ2 ๐ฅ โ 2
Therefore lim
Example 4
Use the definition of one sided limits to prove the statements below:
๐) limโ
๐ฅ
= โ1
|๐ฅ|
๐) lim+
๐ฅโ2
=1
|๐ฅ โ 2|
๐ฅโ0
๐ฅโ2
EXAMPLE 5
The graph above shows that as ๐ฅ approaches 2 from the left, ๐ฆ = ๐(๐ฅ) approaches 1 and
this can be written as
lim ๐(๐ฅ) = 1
๐ฅโ2โ
As ๐ฅ approaches 2 from the right, ๐ฆ = ๐(๐ฅ) approaches 2 and this can be written as
limโ ๐(๐ฅ) = 2
๐ฅโ2
Note that the left and right hand limits and ๐(2) = 1.5 are all different.
EXAMPLE 6
This graph shows that
lim ๐(๐ฅ) = 1
๐ฅโ0โ
and
lim ๐(๐ฅ) = 1
๐ฅโ0+
Note that the left and right hand limits are equal and we can write
lim ๐(๐ฅ) = 1
๐ฅโ0
In this example, the limit when ๐ฅ approaches 0 is equal to ๐(0) = 1.
Example 7 : For the function ๐ฆ = ๐น(๐ฅ) , find
(a)
lim
๐น(๐ฅ)
๐ฅ โ 0โ
(b)
lim
๐น(๐ฅ)
๐ฅ โ 0+
(c)
๐น(0)
(d)
lim
๐น(๐ฅ)
๐ฅโ0
EXAMPLE 8
This graph shows that as ๐ฅ approaches โ 2 from the left, ๐(๐ฅ) gets smaller and smaller
without bound and there is no limit. We write
lim โ ๐(๐ฅ) = โโ
xโโ2
As ๐ฅ approaches โ 2 from the right, ๐(๐ฅ) gets larger and larger without bound and there is
no limit. We write
lim ๐(๐ฅ) = +โ
xโโ2+
Note that โโ and +โ are symbols and not numbers. These are symbols used to indicate
that the limit does not exist.
1.3 INFINITE LIMITE AND VERTICLE ASYMPTOTES
In this section we will take a look at limits whose value is infinity or minus infinity. These kinds of
limit will show up fairly regularly in later sections and in other courses and so youโll need to be able
to deal with them when you run across them.
The first thing we should probably do here is to define just what we mean when we say that a limit
has a value of infinity or minus infinity.
Definition
๐ฅ๐ข๐ฆ ๐(๐) = +โ
๐โ๐
if we can make ๐(๐ฅ) arbitrarily large for all ๐ฅ sufficiently close to ๐ฅ = ๐, from
both sides, without actually letting ๐ฅ = ๐.
๐ฅ๐ข๐ฆ ๐(๐) = โโ
๐โ๐
if we can make ๐(๐ฅ) arbitrarily large and negative for all ๐ฅ sufficiently close to
๐ฅ = ๐, from both sides, without actually letting ๐ฅ = ๐.
Example 1
1
= +โ
2
๐ฅโ0 ๐ฅ
a) lim
โ1
= โโ
2
๐ฅโ0 (๐ฅ โ 1)
b) lim
1
=โ
๐ฅโ0 ๐ฅ
c) lim
d) lim
๐ฅโ2+
๐ฅโ3
๐ฅ2 โ 4
๐ด๐๐ : โ โ
๐ฅโ3
2
๐ฅโ2โ ๐ฅ โ 4
๐ด๐๐ : + โ
๐ฅโ3
2
๐ฅโ2 ๐ฅ โ 4
๐ด๐๐ : ๐ท๐๐ธ
e) lim
f) lim
3 โ ๐ฅ,
1) Let ๐(๐ฅ) = {๐ฅ
+ 1,
2
๐ฅ<2
๐ฅ>2
a) Find lim ๐(๐ฅ) and limโ ๐(๐ฅ)
๐ฅโ2
๐ฅโ2+
b) Does lim ๐(๐ฅ)
๐ฅโ2
exists? If so, what it is? If not, why not?
c) Find lim ๐(๐ฅ)and limโ ๐(๐ฅ)
๐ฅโ4 +
๐ฅโ4
d) Does lim ๐(๐ฅ)
๐ฅโ4
exists? If so, what it is? If not, why not?
3 โ ๐ฅ,
2) Let ๐(๐ฅ) = { ๐ฅ2,
,
2
๐ฅ<2
๐ฅ = 2 be the function below
๐ฅ>2
a) Find lim ๐(๐ฅ) and limโ ๐(๐ฅ) , and f(2).
๐ฅโ2+
๐ฅโ2
b) Does lim ๐(๐ฅ)
๐ฅโ2
exists? If so, what it is? If not, why not?
c) Find lim ๐(๐ฅ) and limโ ๐(๐ฅ)
๐ฅโ1
๐ฅโ1+
d) Does lim ๐(๐ฅ)
๐ฅโ1
exists? If so, what it is? If not, why not?
3
3) For the function ๐(๐ฅ) = {๐ฅ
0
a) Graph ๐(x)
๐ฅโ 1
๐ฅ=1
b) Find limโ ๐(๐ฅ) and lim+ ๐(๐ฅ)
๐ฅโ1
๐ฅโ1
c) Does the lim ๐(๐ฅ)exist?
๐ฅโ1
2
4) For the function ๐(๐ฅ) = {1 โ ๐ฅ
2
๐ฅโ 1
๐ฅ=1
a) Graph ๐(x)
b) Find lim ๐(๐ฅ)and lim+ ๐(๐ฅ)
๐ฅโ1
๐ฅโ1โ
c) Does the lim ๐(๐ฅ) exist?
๐ฅโ1
VERTICAL ASYMPTOTE
DEFINITION VERTICAL ASYMPTOTES
A line ๐ฅ = ๐ is a vertical asymptote of the graph of a function ๐ฆ = ๐(๐ฅ) if either
๐ฅ๐ข๐ฆ ๐(๐) = ±โ
๐โ๐+
๐๐ ๐ฅ๐ข๐ฆโ ๐(๐) = ± โ
๐โ๐
Example 2
Discuss the behavior of the functions below
1
(๐ฅ โ 1)
2
๐) ๐(๐ฅ) =
(๐ฅ + 2)2
ans:
a) ๐(๐ฅ) =
๐๐๐๐ ๐ฅ = 1
๐๐๐๐ ๐ฅ = โ2
a) lim ๐(๐ฅ) = โโ ๐๐๐ lim+ ๐(๐ฅ) = +โ ๐(๐ฅ) has vertical asymptote at ๐ฅ = 1
๐ฅโ1โ
๐ฅโ1
b) lim ๐(๐ฅ) = +โ ๐๐๐ lim+ ๐(๐ฅ) = +โ ๐(๐ฅ) has vertical asymptote at ๐ฅ = โ2
๐ฅโโ2โ
๐ฅโโ2
Example 3
Find the vertical asymptote for the function ๐(๐ฅ) =
1
(๐ฅ โ 2)2
Ans:
1
= +โ
๐ฅโ2 (๐ฅ โ 2)2
lim
y
f(x)=1/(x-2)^2
Series 1
14
12
10
8
6
4
2
x
-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19
-2
-4
-6
1
As ๐ฅ approaches 2 from the right,(๐ฅโ2)2 is positive and eventually becomes larger than any
preassigned number.
limโ
๐ฅโ2
1
(๐ฅโ2)2
As ๐ฅ approaches 2 from the left,
assigned number.
1
= +โ
(๐ฅ โ 2)2
is positive and eventually becomes larger than any pre
lim+
๐ฅโ2
1
= +โ
(๐ฅ โ 2)2
Example 4
Using limit, find vertical asymptotes of the following functions:
๐) ๐(๐ฅ) =
๐ฅ2 + 1
๐ฅโ1
๐) ๐(๐ฅ) =
๐ฅ2 โ 1
2๐ฅ + 1
๐) ๐(๐ฅ) =
๐ฅ3 + 1
๐ฅ2
Example 5
Find the all asymptotes for the function ๐(๐ฅ) =
๐ฅ+3
๐ฅโ2
Example 6
Find the all asymptotes for the function ๐(๐ฅ) =
๐ฅ3 + 1
๐ฅ2
1.4 CALCULATING LIMIT USING THE LIMIT LAWS
BASIC LIMITS
๐) ๐ฅ๐ข๐ฆ ๐ = ๐
๐โ๐
๐) ๐ฅ๐ข๐ฆ ๐ = ๐
๐โ๐
๐) ๐ฅ๐ข๐ฆ+
๐
= +โ
๐
๐
) ๐ฅ๐ข๐ฆโ
๐
= โโ
๐
๐โ๐
๐โ๐
LIMIT LAWS
Assume lim ๐(๐ฅ) = ๐ด
๐ฅโ๐
1)
and lim ๐(๐ฅ) = ๐ต
๐ฅโ๐
๐(๐ฅ) = ๐, then lim ๐(๐ฅ) = ๐
๐ฅโ๐
2)
lim ๐๐(๐ฅ) = ๐ lim ๐(๐ฅ) = ๐๐ด
๐ฅโ๐
๐ฅโ๐
3)
lim [๐(๐ฅ) ± ๐(๐๐ฅ)] = ๐ด ± ๐ต
๐ฅโ๐
lim [๐(๐ฅ)๐(๐๐ฅ)] = lim ๐(๐ฅ) lim ๐(๐ฅ) = ๐ด ๐ต
4)
๐ฅโ๐
๐ฅโ๐
5)
lim
๐ฅโ๐
๐ฅโ๐
lim ๐(๐ฅ) ๐ด
๐(๐ฅ)
= ๐ฅโ๐
=
๐(๐ฅ) lim ๐(๐ฅ) ๐ต
๐ฅโ๐
๐
๐
lim โ๐(๐ฅ) = ๐โ lim ๐(๐ฅ) = โ๐ด
6)
๐ฅโ๐
๐ฅโ๐
๐
if โ๐ด is defined
Example 1
Using the Limit Laws, find the following limits
a) lim 5
๐ฅโ3
b) lim ๐ฅ
๐ฅโ๐
c) lim โ7
๐ฅโ๐
d) lim 0
๐
๐ฅโ
5
e) lim(๐ฅ 3 + 4๐ฅ 2 โ 3)
๐ฅโ๐
๐ฅ 4 +๐ฅ 2 โ1
2
๐ฅโ๐ ๐ฅ +5
f) lim
g) lim โ4๐ฅ 2 โ 3
๐ฅโ2
Example 2
Find limits of rational function below
๐ฅ 2 + 5๐ฅ + 4
๐ฅโโ4 ๐ฅ 2 + 3๐ฅ โ 4
๐) lim
๐ฅ 2 โ 4๐ฅ
๐ฅโ4 ๐ฅ 2 โ 3๐ฅ โ 4
๐) lim
๐) lim
9โ๐ฅ
๐ฅโ9 3 โ
โ๐ฅ
Ans :
(๐ฅ + 1)(๐ฅ + 4)
๐ฅ 2 + 5๐ฅ + 4
๐ฅ+1 3
= lim
= lim
=
2
๐ฅโโ4 ๐ฅ + 3๐ฅ โ 4
๐ฅโโ4 (๐ฅ โ 1)(๐ฅ + 4)
๐ฅโโ4 ๐ฅ โ 1
5
๐) lim
๐ฅ 2 โ 4๐ฅ
๐ฅ(๐ฅ โ 4)
๐ฅ
4
= lim
= lim
=
2
๐ฅโ4 ๐ฅ โ 3๐ฅ โ 4
๐ฅโ4 (๐ฅ โ 4)(๐ฅ + 1)
๐ฅโ4 ๐ฅ + 1
5
๐) lim
๐) lim
9โ๐ฅ
๐ฅโ9 3 โ
โ๐ฅ
= lim
๐ฅโ9
(3 โ โ๐ฅ)(3 + โ๐ฅ)
(3 โ โ๐ฅ)
=6
Example 3
Find
4
๐ฅโ5 ๐ฅ โ 7
a) lim
1
b) lim(2๐ง โ 8)3
๐ฅโ0
c) lim
โโ0 โ5โ
5
+4+2
๐ฅ+3
2
๐ฅโโ3 ๐ฅ + 4๐ฅ + 3
d) lim
๐ก 2 + 3๐ก + 2
e) lim 2
๐กโโ1 ๐ก โ ๐ก โ 2
โ๐ฅ 2 + 8 โ 3
๐ฅ+1
๐ฅโโ1
f) lim
Example 4
Given that lim ๐(๐ฅ) = 0 ๐๐๐ lim ๐(๐ฅ) = โ3
๐ฅโ4
Find
a) lim[๐(๐ฅ) + 3]
๐ฅโ4
b) lim [๐(๐ฅ)]2
๐ฅโ4
๐) lim ๐ฅ๐(๐ฅ)
๐ฅโ4
๐(๐ฅ)
๐ฅโ4 ๐(๐ฅ) โ 1
d) lim
๐ฅโ4
Example 5
Find
โ๐ฅ + 4 โ 2
๐ฅ
๐ฅโ0
a) lim
b)
โ๐ฅ 2 + 4 โ 2
๐ฅ
๐ฅโ0
lim
Example 6 Limit of Piecewise Defined Function
1
๐ฅ+2
2
๐ฅ < โ2
Let ๐(๐ฅ) = { ๐ฅ โ 5 โ2 < ๐ฅ โค 3
๐ฅ>3
โ๐ฅ + 13
Find
๐) lim ๐(๐ฅ)
๐ฅโโ2
b) lim ๐(๐ฅ)
๐ฅโ0
c) lim ๐(๐ฅ)
๐ฅโ3
Example 7
๐ฅโ1 ๐ฅ โค3
Let ๐(๐ฅ) = {
3๐ฅ โ 7 ๐ฅ > 3
Find
๐) limโ ๐(๐ฅ)
๐ฅโ3
๐) lim+ ๐(๐ฅ)
๐ฅโ3
c) lim ๐(๐ฅ)
๐ฅโ3
Example 8
1 + ๐ฅ2
Let ๐(๐ฅ) = { 2 โ ๐ฅ
(๐ฅ โ 2)2
๐ฅโค0
0<๐ฅโค2
๐ฅ>2
Find
๐) lim ๐(๐ฅ)
๐ฅโ0
๐) lim ๐(๐ฅ)
๐ฅโ2
Example 9 Find limit or explain why it does not exist.
๐ฅ 2 โ 4๐ฅ + 4
a) lim 3
2
๐ฅโ0 ๐ฅ + 5๐ฅ โ 4๐ฅ
๐ฅ 2 โ 4๐ฅ + 4
b) lim 3
2
๐ฅโ2 ๐ฅ + 5๐ฅ โ 4๐ฅ
๐ฅ2 + ๐ฅ
๐) lim 5
๐ฅโ0 ๐ฅ + 2๐ฅ 4 + ๐ฅ 3
d) lim
๐ฅโโ1
e) lim
๐ฅโ1
๐ฅ2 + ๐ฅ
๐ฅ 5 + 2๐ฅ 4 + ๐ฅ 3
1 โ โ๐ฅ
1โ๐ฅ
๐ฅ 2 โ ๐2
๐) lim 4
๐ฅโ๐ ๐ฅ โ ๐4
g) lim
๐ฅโ0
(๐ฅ + โ)2 โ ๐ฅ 2
โ
h) lim
โโ0
(๐ฅ + โ)2 โ ๐ฅ 2
โ
1
1
โ2
2
+
๐ฅ
i) lim
๐ฅ
๐ฅโ0
1.5 LIMITS AT INFINITY AND HORIZONTAL ASYMPTOTES
Limits at infinity are used to describe the behavior of functions as the
independent variable increases or decreases without bound. If a function
approaches a numerical value L in either of these situations, write
๐ฅ๐ข๐ฆ ๐(๐) = ๐ณ ๐๐
๐โโโ
๐ฅ๐ข๐ฆ ๐(๐) = ๐ณ
๐โ+โ
and ๐(๐ฅ) is said to have a horizontal asymptote at ๐ = ๐ณ. A function may
have different horizontal asymptotes in each direction, have a horizontal
asymptote in one direction only, or have no horizontal asymptote.
Example 1
Find the horizontal asymptote for the function:
5๐ฅ 2 + 8๐ฅ โ 3
๐(๐ฅ) =
3๐ฅ 2 + 2
Ans:
lim ๐(๐ฅ) =
๐ฅโโโ
5
5
๐๐๐ lim ๐(๐ฅ) =
๐ฅโ+โ
3
3
5
So the horizontal asymptote is ๐ฆ = 3
Example 2: Evaluate
2๐ฅ 2 + 3
๐ฅโ+โ ๐ฅ 2 โ 5๐ฅ โ 1
lim
Factor the largest power of ๐ฅ in the numerator from each term and the largest power
of ๐ฅ in the denominator from each term.
You find that
2๐ฅ 2 + 3
๐ฅโ+โ ๐ฅ 2 โ 5๐ฅ โ 1
lim
3
2)
๐ฅ
= lim
5 1
๐ฅโ+โ 2
๐ฅ (1 โ ๐ฅ โ 2 )
๐ฅ
๐ฅ 2 (2 +
2+
= lim
๐ฅโ+โ
3
๐ฅ2
5 1
1โ๐ฅโ 2
๐ฅ
=
2+0
=2
1โ0โ0
The function has a horizontal asymptote at ๐ = ๐.
Example 3: Evaluate
๐ฅ3 โ 2
lim
๐ฅโ+โ 5๐ฅ 4 โ 3๐ฅ 3 + 2๐ฅ
The function has a horizontal asymptote at ๐ = ๐.
Example 4: Evaluate
9๐ฅ 2
๐ฅโ+โ ๐ฅ + 2
lim
Answer:
Because this limit does not approach a real number value, the function has no horizontal
asymptote as ๐ฅ increases without bound.
Limits of Polynomial as ๐ โ ±โ
๐ฅ๐ข๐ฆ [๐๐ + ๐๐ ๐ + โฏ + ๐๐ ๐๐ ]= ๐ฅ๐ข๐ฆ ๐๐ ๐๐
๐โโโ
๐โโโ
๐ฅ๐ข๐ฆ [๐๐ + ๐๐ ๐ + โฏ + ๐๐ ๐๐ ]= ๐ฅ๐ข๐ฆ ๐๐ ๐๐
๐โ+โ
๐โ+โ
Example 4: Evaluate .
๐) lim ๐ฅ 3 โ ๐ฅ 2 โ 3๐ฅ
๐ฅโโโ
๐) lim 5๐ฅ 7 โ ๐ฅ 2 โ 3๐ฅ โ 9
๐ฅโโโ
๐) lim โ4๐ฅ 8 โ ๐ฅ 5 โ 7๐ฅ + 4
๐ฅโโโ
Limit laws For Limits at Infinity
๐
๐ฅ๐ข๐ฆ ๐๐(๐) = ๐ ๐ฅ๐ข๐ฆ ๐(๐)
๐ฅ๐ข๐ฆ (๐(๐))๐ = ( ๐ฅ๐ข๐ฆ ๐(๐))
๐โ+โ
๐โ+โ
๐โ+โ
๐ฅ๐ข๐ฆ ๐๐(๐) = ๐ ๐ฅ๐ข๐ฆ ๐(๐)
๐
๐ฅ๐ข๐ฆ (๐(๐))๐ = ( ๐ฅ๐ข๐ฆ ๐(๐))
๐โโโ
๐โโโ
๐โโโ
Infinite Limit at Infinity
๐ฅ๐ข๐ฆ ๐(๐) = ±โ
๐โโโ
Write limits at infinity for the graph below :
๐)๐(๐ฅ) = ๐ฅ,
๐โ+โ
๐๐)๐(๐ฅ) = ๐ฅ 3 ,
๐๐๐) ๐(๐ฅ) = ๐ฅ 2
๐โโโ
Limit at Infinity for Rational Function
Example 5
3๐ฅ 5 โ 2๐ฅ 4 + 1
๐ฅโ+โ 1 โ 5๐ฅ 2 + 3๐ฅ 2
lim
Ans:
3๐ฅ 5
= lim ๐ฅ 2 = +โ
๐ฅโ+โ 3๐ฅ 3
๐ฅโ+โ
lim
Example 6 Limits Involving Radical
Find
3
a) lim โ
๐ฅโ+โ
3๐ฅ + 5
6๐ฅ โ 8
3 3๐ 7 โ 4๐ 5
b) lim โ
๐ โ+โ
2๐ 7 + 1
Ans:
3 3๐ 7 โ 4๐ 5
3
3๐ 7 โ 4๐ 5 3
3๐ 7 3 3
โ lim
โ lim
b) lim โ
=
=
=โ
๐ โ+โ
๐ โ+โ 2๐ 7 + 1
๐ โ+โ 2๐ 7
2๐ 7 + 1
2
Example 7
Find
โ๐ฅ 2 + 2
๐ฅโ+โ 3๐ฅ โ 6
๐) lim
โ๐ฅ 2 + 2
๐ฅโโโ 3๐ฅ โ 6
๐) lim
๐) lim
2โ๐ฆ
๐ฆโโโ โ7
+ 6๐ฆ 2
๐) lim โ๐ฅ 6 + 5 โ ๐ฅ 3
๐ฅโ+โ
๐) lim โ๐ฅ 6 + 5๐ฅ 3 โ ๐ฅ 3
๐ฅโ+โ
๐) lim โ๐ฅ 2 โ 3๐ฅ โ ๐ฅ
๐ฅโ+โ
Ans:
2โ๐ฆ
|๐ฆ|
2โ๐ฆ
1
โ๐ฆ
๐) lim
= lim
=
=
๐ฆโโโ โ7 + 6๐ฆ 2
๐ฆโโโ โ7 + 6๐ฆ 2
7
โ6
โ 2+6
๐ฆ
|๐ฆ|
2โ๐ฆ
๐) lim (โ๐ฅ 2 โ 3๐ฅ โ ๐ฅ ) ×
๐ฅโ+โ
=
โ3
โ1 โ 3 + 1
๐ฅ
=
โ3
2
(โ๐ฅ 2 โ 3๐ฅ + ๐ฅ )
(โ๐ฅ 2 โ 3๐ฅ + ๐ฅ )
=
โ3๐ฅ
โ๐ฅ 2 โ 3๐ฅ + ๐ฅ
=
โ3๐ฅ
|๐ฅ|
2
โ๐ฅ โ2 3๐ฅ + ๐ฅ
๐ฅ
๐ฅ
1.5 LIMITS OF TRIGONOMETRIC FUNCTION
The trigonometric functions sine and cosine have four important limit properties:
lim
x ๏ฎ ( ๏ฐ/2) ๏ซ
tan x ๏ฝ ๏ญ ๏ฅ
lim cot x ๏ฝ ๏ฅ
x ๏ฎ0 ๏ซ
lim
x ๏ฎ ( ๏ฐ/2) ๏ซ
sec x ๏ฝ ๏ญ ๏ฅ
lim csc x ๏ฝ ๏ฅ
x ๏ฎ0 ๏ซ
lim
x ๏ฎ ( ๏ฐ/2) ๏ญ
tan x ๏ฝ ๏ฅ
lim cot x ๏ฝ ๏ญ ๏ฅ
x ๏ฎ0 ๏ญ
lim
x ๏ฎ ( ๏ฐ/2) ๏ญ
sec x ๏ฝ ๏ฅ
lim csc x ๏ฝ ๏ญ ๏ฅ
x ๏ฎ0 ๏ญ
lim
x ๏ฎ ๏ญ( ๏ฐ/2) ๏ซ
tan x ๏ฝ ๏ญ ๏ฅ
lim cot x ๏ฝ ๏ฅ
x๏ฎ๏ฐ๏ซ
lim
x ๏ฎ ๏ญ( ๏ฐ/2) ๏ซ
sec x ๏ฝ ๏ฅ
lim csc x ๏ฝ ๏ญ ๏ฅ
x๏ฎ๏ฐ๏ซ
lim
x ๏ฎ ๏ญ( ๏ฐ/2) ๏ญ
tan x ๏ฝ ๏ฅ
lim cot x ๏ฝ ๏ญ ๏ฅ
x๏ฎ๏ฐ๏ญ
lim
x ๏ฎ ๏ญ ( ๏ฐ/2) ๏ญ
sec x ๏ฝ ๏ญ ๏ฅ
lim csc x ๏ฝ ๏ฅ
x๏ฎ๏ฐ๏ญ
You can use these properties to evaluate many limit problems involving the six basic trigonometric
functions.
Example 1: Evaluate
lim
๐ฅโ0
.
cos ๐ฅ
๐ ๐๐๐ฅ โ 3
Substituting 0 for ๐ฅ, you find that ๐๐๐ ๐ฅ approaches 1 and ๐ ๐๐ ๐ฅ โ 3 approaches โ3; hence,
lim
๐ฅโ0
cos ๐ฅ
1
=โ
๐ ๐๐๐ฅ โ 3
3
Example 2: Evaluate
lim cot ๐ฅ
๐ฅโ0+
Because cot x = cos x/sin x, you find
lim+
๐ฅโ0
cos ๐ฅ
๐ ๐๐๐ฅ
The numerator approaches 1 and the denominator approaches 0 through positive values because
we are approaching 0 in the first quadrant; hence, the function increases without bound and
lim cot ๐ฅ = +โ
๐ฅโ0+
and the function has a vertical asymptote at ๐ฅ = 0.
Example 3: Evaluate
lim
๐ฅโ0
sin 4๐ฅ
๐ฅ
Multiplying the numerator and the denominator by 4 produces
Example 4: Evaluate .
lim
๐ฅโ0
We can start with
sec x = 1/cos x,
๐ ec๐ฅ โ 1
๐ฅ
Example 5 : Evaluate
lim
๐กโโ3
sin(๐ก + 3)
๐ก 3 + 3๐ก 2
Answer:
Example 6: Evaluate
lim ๐ฅ
๐ฅโ0
cos 2๐ฅ
sin 2๐ฅ
Example 7 : Evaluate
lim+
๐ฅโ0
sin ๐ฅ
|๐ฅ|
lim+
๐ฅโ0
limโ
๐ฅโ0
sin ๐ฅ
sin ๐ฅ
= lim+
=1
๐ฅโ0
|๐ฅ|
๐ฅ
sin ๐ฅ
sin ๐ฅ
= limโ
=โ1
๐ฅโ0 โ๐ฅ
|๐ฅ|
So lim+
๐ฅโ0
sin ๐ฅ
๐๐๐๐ ๐๐๐ก ๐๐ฅ๐๐ ๐ก
|๐ฅ|
Example 8
Evaluate
lim๐
๐ฅโ
2
๐ ๐๐ ๐ฅ
๐๐๐ 6๐ฅ
Example 9
Find
๐๐๐ ๐ฅ
๐ฅโโ๐ ๐๐๐ก ๐ฅ
lim
Example 10
Find the lim๐
๐ฅโ
2
sin ๐ฅ
cos 6๐ฅ
Ans:
sin ๐ฅ
cos 6๐ฅ
lim๐
๐ฅโ
2
๐
2 = 1 = โ1
=
6๐ โ1
๐๐๐ 2
๐ ๐๐
Example 11
sin 3๐ฅ
๐ฅโ0
๐ฅ
lim
Ans:
sin 3๐ฅ
(3) = 3
๐ฅโ0 3๐ฅ
lim
Example 12
Find lim
๐กโโ3
๐ ๐๐(๐ก + 3)
๐ก 3 + 3๐ก 2
Ans:
lim
๐ ๐๐(๐ก + 3)
๐ก 3 + 3๐ก 2
lim
๐ ๐๐(๐ก + 3)
๐ก 2 (๐ก + 3)
๐กโโ3
๐กโโ3
1 ๐ ๐๐(๐ก + 3) 1
= (1)
๐กโโ3 ๐ก 2 (๐ก + 3)
9
lim
Example 13
Find lim ๐ฅ cot 2๐ฅ
๐กโ0
Ans:
lim ๐ฅ
๐กโ0
lim
๐ฅ
๐กโ0 2๐ฅ
cos 2๐ฅ
cos 2๐ฅ
sin 2๐ฅ
2๐ฅ
1
1
= (1)(1) =
sin 2๐ฅ 2
2
Example 14
1 โ cos ๐ฅ
๐ฅโ0
๐ฅ2
Find lim
Ans:
1 โ cos ๐ฅ 1 + cos ๐ฅ
.
๐ฅโ0
๐ฅ2
1 + cos ๐ฅ
lim
1 โ ๐๐๐ 2 ๐ฅ
๐ ๐๐2 ๐ฅ
๐ ๐๐๐ฅ 2
1
1
1
=
lim
=
lim
(
)
= 12 ( ) =
2
2
๐ฅโ0 ๐ฅ (1 + cos ๐ฅ)
๐ฅโ0 ๐ฅ (1 + cos ๐ฅ)
๐ฅโ0
๐ฅ
1 + ๐๐๐ ๐ฅ
2
2
lim
Example 15
๐ก๐๐7๐ฅ
๐ฅโ0 ๐ก๐๐2๐ฅ
Find lim
Example 16
5๐ฅ + sin 3๐ฅ
๐ฅโ0 ๐ก๐๐4๐ฅ โ 7๐ฅ๐๐๐ 2๐ฅ
Find lim
Ans:
1โ
5๐ฅ + sin 3๐ฅ
8
๐ฅ
.
=โ
๐ฅโ0 ๐ก๐๐4๐ฅ โ 7๐ฅ๐๐๐ 2๐ฅ 1โ
3
๐ฅ
lim
Example 17
Find
sin โ
โโ0 1 โ cos h
lim
Ans:
sin โ
โโ0 1 โ cos h
lim
×
1 + cos h
1 + cos h
1 + cos โ 2
=
โโ0
sin โ
0
= lim
๐ท๐๐ธ
Example 18
Find
1 โ cos 3โ
โโ0 ๐๐๐ 2 5โ โ 1
lim
Ans:
1 โ cos 3โ
1 + cos 3โ ๐๐๐ 2 5โ + 1 โ9
×
×
=
โโ0 ๐๐๐ 2 5โ โ 1
๐๐๐ 2 5โ + 1 1 + cos 3โ
50
lim
Example 19
Find
๐ ๐๐๐๐ฅ
๐ฅโ1 ๐ฅ โ 1
lim
Ans:
๐ฟ๐๐ก โ = ๐ฅ โ 1, ๐ฅ โ 1, โ โ 0
๐ ๐๐๐๐ฅ
๐ฅโ1 ๐ฅ โ 1
๐ ๐๐๐(โ + 1)
sin ๐๐ก๐๐๐ ๐ + ๐๐๐ ๐๐ ๐๐๐
๐ ๐๐๐๐ก
๐ ๐๐๐๐ก
lim
= lim
= โ lim
= โ lim
๐ = โ๐
โโ0
โโ0
โโ0
โโ0
โ
โ
๐ก
๐๐ก
lim
Example 20
๐๐๐ ๐ฅ
1
= โ
xโ0 ๐ ๐๐๐ฅ โ 3
3
Find lim
Example 21
Find lim+ ๐๐๐ ๐ฅ = lim+
xโ0
xโ0
๐๐๐ ๐ฅ
= โโ
๐ ๐๐๐ฅ
1.6 CONTINUITY
A function is said to be continuous on an interval if its graph has no breaks, jumps or holes in that
interval.
Example
๐) ๐(๐ฅ) = 3๐ฅ 3 + 2๐ฅ + 1
๐) ๐(๐ฅ) =
1
๐ฅ
Definition of Continuity
The function ๐ is continuous at ๐ฅ = ๐ if f is defined at ๐ฅ = ๐ and
lim ๐(๐ฅ) = ๐(๐)
๐ฅโ๐
The function is continuous on an interval (๐, ๐) if it is continuous at every point in the interval.
Example 1: Are the functions continuous on the given interval?
๐) ๐(๐ฅ) = ๐ฅ + 2
on โ3 โค ๐ฅ โค 3
๐) ๐(๐ฅ) = 2๐ฅ
on
0 โค ๐ฅ โค 10
๐) ๐(๐ฅ) = ๐ฅ 2 + 2
on
0โค๐ฅโค5
on
2โค๐ฅโค3
on
0โค๐ฅโค2
1
๐ฅโ1
1
๐) ๐(๐ฅ) =
๐ฅโ1
๐) ๐(๐ฅ) =
Example 2: Determine whether the following function are continuous at ๐ฅ = 2
๐) ๐(๐ฅ) =
๐ฅ2 โ 4
๐ฅโ2
๐ฅ2 โ 4
๐) ๐(๐ฅ) = { ๐ฅ โ 2 ๐ฅ โ 2}
3
๐ฅ=2
๐ฅ2 โ 4
๐) ๐(๐ฅ) = { ๐ฅ โ 2 ๐ฅ โ 2}
4
๐ฅ=2
Definition
If a function ๐ is continuous at ๐ = ๐ then we must have the following three
conditions.
1. ๐(๐) is defined; in other words, ๐ is in the domain of ๐.
Example 1
The function
๐ฅ2 โ 9
๐(๐ฅ) =
๐ฅโ3
fails to be continuous at ๐ = ๐ since ๐ is not in the domain of ๐.
Condition 1 is not true.
Example 2
The function
1
๐๐
๐(๐ฅ) = {๐ฅ
2 ๐๐
fails to be continuous at ๐ = ๐ since the limit
๐ฅโ 0
๐ฅ=0
lim ๐(๐ฅ) does not exist, therefore Condition 2 is not true.
๐ฅโ0
Example 3
The function
๐ฅ2 โ 9
โ(๐ฅ) = { ๐ฅ โ 3
7
๐๐
๐ฅโ 3
๐๐
๐ฅ=3
does satisfy condition 1 since 3 is in the domain of ๐, ๐(๐) = ๐, and does satisfy condition 2
since
(๐ฅ โ 3)(๐ฅ + 3)
๐ฅ2 โ 9
= lim
= lim ๐ฅ + 3 = 6
๐ฅโ3 ๐ฅ โ 3
๐ฅโ3
๐ฅโ3
๐ฅโ3
lim
does exist.
However, since these two numbers are different, condition 3 is violated and ๐(๐) fails to be
continuous at ๐ = ๐.
Example 4:
Determine whether the function below is continuous.
๐ฅ3 + 2
๐ฅ โค โ1
2
๐(๐ฅ) = {๐ฅ + ๐ฅ + 1 โ1 < ๐ฅ < 1}
๐ฅ4 + 1
๐ฅโฅ1
Ans:
๐ฅ is continuous at ๐ฅ = โ1
๐ฅ is discontinuous at ๐ฅ = 1
Example 5:
2๐ฅ 3 + 16
Given ๐(๐ฅ) = {๐ฅ 2 + ๐๐ฅ + ๐
3๐ฅ 4 โ 48
๐ฅ โค โ2
โ2 < ๐ฅ < 2}
๐ฅโฅ2
Find ๐ and ๐ such that ๐(๐) is continuous everywhere
Ans: ๐ = 0, ๐ = โ4
TUTORIAL
1.2 CALCULATING LIMIT USING LIMIT LAW
โ๐ฅ โ 3
๐ฅโ9 ๐ฅ โ 9
1) Find lim
2) Find
lim
๐ฅโ4
4๐ฅ โ ๐ฅ 2
2 โ โ๐ฅ
โ๐ฅ 2 + 12 โ 4
๐ฅโ2
๐ฅโ2
3)Find lim
๐ข4 โ 1
๐ขโ1 ๐ข 3 โ 1
4)Find lim
5) ๐uppose the lim ๐(๐ฅ) = 1 and lim ๐(๐ฅ) = โ5 , show that lim
๐ฅโ0
๐ฅโ0
๐ฅโ0
2 ๐(๐ฅ) โ ๐(๐ฅ)
(๐(๐ฅ) +
2
7)3
=
7
4
๐ฃ3 โ 8
๐ฃโ2 ๐ฃ 4 โ 16
6) Find lim
5
โ5โ(๐ฅ)
=
๐ฅโ1 ๐(๐ฅ)(4 โ ๐(๐ฅ))
2
7) Suppose lim โ(๐ฅ) = 5and lim ๐(๐ฅ) = 1 , show that lim
๐ฅโ1
๐ฅโ1
8) Suppose
lim ๐(๐ฅ) = 7 and lim ๐(๐ฅ) = โ3 , find
๐ฅโ๐
๐ฅโ๐
a) lim (๐(๐ฅ) + ๐(๐ฅ))
๐ฅโ๐
b) lim ๐(๐ฅ)๐(๐ฅ)
๐ฅโ๐
c) lim 4๐(๐ฅ)
๐ฅโ๐
๐(๐ฅ)
๐ฅโ๐ ๐(๐ฅ)
d) lim
9) If lim
๐ฅโ4
๐(๐ฅ) โ 5
= 1, find lim ๐(๐ฅ)
๐ฅโ4
๐ฅโ2
10) Suppose lim ๐(๐ฅ) = 4 , lim ๐(๐ฅ) = 0 and lim ๐ (๐ฅ) = โ3 , find
๐ฅโโ2
a) lim
๐ฅโโ2
๐ฅโโ2
(๐(๐ฅ) + ๐(๐ฅ) + ๐ (๐ฅ))
b) lim
๐(๐ฅ)๐(๐ฅ)๐ (๐ฅ)
c) lim
4๐ (๐ฅ)
d) lim
(โ4๐(๐ฅ) + 5๐(๐ฅ))
๐ (๐ฅ)
๐ฅโโ2
๐ฅโโ2
๐ฅโโ2
๐ฅโโ2
๐(๐ฅ)
= 1, find
2
๐ฅโโ2 ๐ฅ
11) If lim
,
๐)
๐)
lim ๐(๐ฅ)
๐ฅโโ2
lim
๐ฅโโ2
๐(๐ฅ)
๐ฅ
12) If
๐(๐ฅ)
= 1, find
2
๐ฅโ0 ๐ฅ
lim
a)
lim ๐(๐ฅ)
๐ฅโ0
๐(๐ฅ)
๐ฅโ0 ๐ฅ
b) lim
13)
๐) If
๐(๐ฅ) โ 5
= 3, find lim ๐(๐ฅ)
๐ฅโ2 ๐ฅ โ 2
๐ฅโ2
lim
๐(๐ฅ) โ 5
= 4, ๐๐๐๐ lim ๐(๐ฅ)
๐ฅโ2 ๐ฅ โ 2
๐ฅโ2
๐) If lim
Ans:
1) 1/6
2)
3) ½
4)
5) 7/4
1.3 INFINITE LIMIT AND VERTICAL ASYMPTOTES
Using limits , identify vertical asymptote for the function below:
๐) ๐(๐ฅ) =
๐ฅ2 โ 2
๐ฅโ2
๐ฅ3 โ ๐ฅ + 3
๐) ๐(๐ฅ) =
๐ฅ
๐) ๐(๐ฅ) =
๐) โ(๐ฅ) =
โ๐ฅ 3 + 3๐ฅ 2 + ๐ฅ โ 1
๐ฅโ3
๐ฅ5 โ ๐ฅ3 + 3
๐ฅ2 โ 1
1.4 FIND LIMITS AT INFINITY
3๐ฅ + 1
๐ฅโ+โ 2๐ฅ โ 5
6) lim
3๐ฅ + 7
๐ฅโโโ ๐ฅ 2 โ 2
7) lim
๐ฅโ2
๐ฅโโโ ๐ฅ 2 + 2๐ฅ + 1
8) lim
3 2 + 3๐ฅ โ 5๐ฅ 2
9) lim โ
๐ฅโโโ
1 + 8๐ฅ 2
11) lim
2โ๐ฆ
๐ฆโโโ โ7 +
6๐ฆ 2
โ5๐ฅ 2 โ 2
๐ฅโโโ ๐ฅ + 3
12) lim
6 โ ๐ก3
๐กโโโ 7๐ก 3 + 3
13) lim
โ3๐ฅ 4 + ๐ฅ
๐ฅโโโ ๐ฅ 2 โ 8
14) lim
15) lim (โ๐ฅ 2 โ ๐ฅ โ ๐ฅ)
๐ฅโ+โ
๐ฅ + 4๐ฅ 3
๐ฅโโโ 1 โ ๐ฅ 2 + 7๐ฅ 3
16) lim
17) lim (โ๐ฅ 2 + ๐๐ฅ โ ๐ฅ)
๐ฅโ+โ
18) lim (โ๐ฅ 2 + ๐๐ฅ โ โ๐ฅ 2 + ๐๐ฅ)
๐ฅโ+โ
19) lim (โ๐ฅ 2 โ 3๐ฅ โ ๐ฅ)
๐ฅโ+โ
Ans:
1) (a)2,1 (b) no lim+ ๐(๐ฅ) โ limโ ๐(๐ฅ)
๐ฅโ2
3) (a)graph (b)1,1 (c)yes, 1
๐ฅโ2
(c)3,3
(d)yes 3
5) ๐) โ3, c) 1, e)
2
, g) 1, i) โ2
โ5
6)3/2
7)0
3
9)โ โ5
1
โ6
11)
13)โ1/7
15)0
17)๐/2
1.5 LIMIT OF TRIGONOMETRY FUNCTION
๐2
๐โ0 1 โ ๐๐๐ ๐
1) lim
1 โ ๐๐๐ 3โ
2
โโ0 ๐๐๐ 5โ โ 1
2) lim
2 โ ๐๐๐ 3๐ฅ โ ๐๐๐ 4๐ฅ
๐ฅ
๐ฅโ0
3) lim
๐ก๐๐3๐ฅ 2 + ๐ ๐๐2 5๐ฅ
4) lim
๐ฅ2
๐ฅโ0
tan ๐๐ฅ
, ๐ โ 0, ๐ โ 0
๐ฅโ0 sin ๐๐ฅ
5) lim
๐ฅ 2 โ 3๐ ๐๐๐ฅ
๐ฅ
๐ฅโ0
6) lim
๐โ๐ฅ
;
๐ฅโ๐ ๐ ๐๐๐ฅ
7) lim
๐ป๐๐๐ก: ๐ฟ๐๐ก ๐ก =
1
1
8) lim ๐ฅ (1 โ ๐๐๐ ) ; ๐ก =
๐ฅโโโ
๐ฅ
๐ฅ
sin(๐๐ฅ)
๐ฅโ1 ๐ฅ โ 1
9) lim
๐ ๐
โ
2 ๐ฅ
10) lim๐
๐ฅโ
Ans:
1) 2
2)
3) 0
4)
5) a/b
6)
7) 1
8)
9) โ๐
10)
4
๐ก๐๐๐ฅ โ 1
๐ฅ โ ๐โ4
1.6 CONTINUITY
1. Graph the function, then discuss limits, one sided limits, and continuity of ๐
at ๐ฅ = โ1,0 ๐๐๐ 1.
1
โ๐ฅ
๐) ๐(๐ฅ) = 1
โ๐ฅ
{1
0
1
๐) ๐(๐ฅ) = ๐ฅ
0
{1
๐๐
๐๐
๐๐
๐๐
๐๐
๐ฅ โค โ1
โ1 < ๐ฅ < 0
๐ฅ=0
0<๐ฅ<1
๐ฅโฅ1
๐๐
๐ฅ โค โ1
๐๐
0 < |๐ฅ| < 1
๐๐
๐๐
๐ฅ=1
๐ฅ>1
2. At which points do the functions in exercises continuous.
๐) ๐ฆ =
1
โ 3๐ฅ
๐ฅโ2
๐๐๐ : ๐๐ฅ๐๐๐๐ก ๐๐ก ๐ฅ = 2
๐) ๐ฆ =
1
+4
(๐ฅ + 2)2
๐) ๐ฆ =
๐ฅ2
๐ฅ+1
โ 4๐ฅ + 3
๐๐๐ : ๐๐ฅ๐๐๐๐ก ๐ฅ = 3
๐ฅ2
๐ฅ+3
โ 3๐ฅ โ 1
๐๐๐ : ๐๐ฅ๐๐๐๐ก ๐ฅ = 5 , ๐ฅ = 2
๐) ๐ฆ =
๐)
๐ฆ=
1
๐ฅ2
โ
|๐ฅ| + 1 2
๐) ๐ฆ = โ2๐ฅ + 3
4
๐) ๐ฆ = โ3๐ฅ โ 1
๐๐๐ : ๐๐ฅ๐๐๐๐ก ๐๐ก ๐ฅ = 2
ans: continuous everywhere
๐๐๐ :
all x โฅ โ3/2
๐๐๐ : ๐ฅ โฅ
1
3
1โ
3
โ) ๐ฆ = (2๐ฅ โ 1)
๐๐๐ : ๐๐๐ ๐ฅ
1โ
5
๐) ๐ฆ = (2 โ ๐ฅ)
๐๐๐ : ๐๐๐ ๐ฅ
3. For what value of a is ๐(๐ฅ) = {
๐ฅ2 โ 1
2๐๐ฅ
4. For what value of a is ๐(๐ฅ) = {
๐ฅ
๐๐ฅ 2
๐๐
๐๐
๐๐
๐๐
๐ฅ<3
, continuous at every ๐ฅ?
๐ฅโฅ3
Ans: 4/3
๐ฅ < โ2
, continuous at every ๐ฅ?
๐ฅ โฅ โ2
Ans: -1/2
5. Discuss limits, one sided limits, and continuity of ๐
at ๐ฅ = 0, 1 ๐๐๐ 2.
11
f(x)=(x^2)-1
f(x)=2x
f(x)=-2x+4
10
f(x)=0
Series 1
9
8
7
6
5
4
3
2
1
x
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
1
-1
-2
-3
2
3
4
5
6
7
8
9
10
11
ADDITIONAL QUESTIONS
Limits and Continuity
1.
Find the limits:-
(๐)
(๐)
โ3x 4 โ 1
lim
x โ โโ ๐ฅ 2 (๐ฅ โ 1)
โx 2 (โ2(x 2 + 4)
lim
(
)
๐ฅโ2
3x 2 โ 4
Ans: +โ , 1
2.
Given ๐(๐ฅ) is a function defined by
๐ฅโค1
๐ฅ๐ฅ 2 + a
๐(๐ฅ) = {๐๐๐ฅ + ๐ 1 < ๐ฅ โค 3
๐ฅ>3
2๐ฅ 2
(a)
(b)
Determine the value of ๐ if
Evaluate ๐ and ๐ if
lim
๐(๐ฅ) = 6 .
๐ฅ โ 1โ
lim
lim
๐(๐ฅ) and
๐(๐ฅ) exist.
๐ฅโ1
๐ฅโ3
Ans: ๐ = ๐, ๐ = ๐, ๐ = ๐
3.
Evaluate the limit.
lim 1 โ cos 7k
๐ โ 0 cos 5๐ โ 1
Ans: โ
๐๐
๐๐
4. Evaluate the limit
lim
3๐ฅ + 1
๐ฅโโโ โ๐ฅ 2
+1
Ans: 3
5. Find the value of the following limit:
limโ
๐ฅโ1
โ2๐ฅ (๐ฅ โ 1)
|๐ฅ โ 1|
Ans: โโ๐
6. Find the value of k, if possible, that will make the function below
continuous everywhere.
๐ฅ + 2๐,
๐ฅโค1
๐(๐ฅ) = {
๐๐ฅ 2 + ๐ฅ + 1, ๐ฅ > 1
Ans: k = 1
7. Find values of x at which f is not continuous
๏ฌ
๏ฏ3 ๏ญ x, 0 ๏ฃ x ๏ผ 2
๏ฏ
๏ฏ 4x ๏ญ1
f ( x) ๏ฝ ๏ญ
, 2๏ฃ x๏ผ4
๏ฏ x ๏ญ1
๏ฏ 15
๏ฏ๏ฎ 7 ๏ญ x , 4 ๏ผ x ๏ผ 7
Ans:
๐
๐๐๐๐๐๐๐๐๐๐๐ ๐๐ ๐ = ๐ ๐๐๐
๐ = ๐
8. Find the interval at which
๐(๐ฅ) =
(๐ฅ โ 1)2
๐ฅ2 โ 1
is continuous.
Ans: (โโ, โ๐) โช (โ๐, ๐) โช (๐, +โ)
9 . Evaluate the limit if exist:
lim๐
๐ฅโ
3
๐ ๐๐(๐ฅ โ ๐3)
2
(๐ฅ โ ๐3)
Ans: does not exist
10. Given f ๏จx ๏ฉ ๏ฝ
3๏ญ x
x2 ๏ญ 9
. Evaluate:
(a) lim ๏ญ f ๏จx ๏ฉ
{ans: 1/6}
(b) lim ๏ซ f ๏จx ๏ฉ
{ans: -1/6}
(c) lim f ๏จx ๏ฉ
{ans: DNE}
x๏ฎ3
x๏ฎ3
x๏ฎ3
11. lim
x ๏ฎ1
x ๏ญ1
๏จ1 ๏ญ x ๏ฉ๏จ
๏ฉ
x ๏ซ1
{ans: -1/4}
2 ๏ซ x ๏ซ x2
does not exist.
x ๏ฎ 2 4 ๏ซ 2x ๏ญ 2x 2
12. Explain why lim
13
lim
x ๏ฎ ๏ซ๏ฅ
x 2 ๏ญ 2x ๏ญ 1 ๏ญ x 2 ๏ญ 7x ๏ซ 3
{ans: 5/2}
๏ฌ2 x 2 ๏ญ a ,
x ๏ฃ1
๏ฏ
14. If f ๏จ x ๏ฉ ๏ฝ ๏ญ bx ๏ซ c, 1 ๏ผ x ๏ฃ 3
๏ฏ x3 ,
x๏พ3
๏ฎ
(a) Determine the value of a if lim ๏ญ f ๏จx ๏ฉ ๏ฝ ๏ญ5.
{ans: 7}
(b) Evaluate b and c if lim f ๏จx ๏ฉ and lim f ๏จx ๏ฉ exist.
{ans: b=16, c=-21}
x ๏ฎ1
x ๏ฎ1
x๏ฎ3
15. Determine whether f is continuous at x = 1 if
๏ฌ x ๏ญ1
๏ฏ x ๏ญ1 , x ๏ผ 1
๏ฏ
f ๏จx ๏ฉ ๏ฝ ๏ญ ๏ญ 1,
x ๏ฝ1
๏ฏ2 ๏ญ 3 x , x ๏พ 1
๏ฏ
๏ฎ
{ans: continuous}
16.
๏ฌ x2 ,
0๏ผ x๏ผ2
๏ฏ
f ๏จ x ๏ฉ ๏ฝ ๏ญ x ๏ซ 2, 2 ๏ผ x ๏ผ 4
๏ฏ2ax ๏ญ 7,
x๏ณ4
๏ฎ
Given
(a) Determine whether lim f ๏จx ๏ฉ exist.
x๏ฎ2
{ans: exists}
(b) Is f continuous at x = 2? Why?
{ans: not continuous}
(c) What is the value of a if f is continuous at x = 4?
{ans: 13/8}
๏ฆ๏ฑ ๏ถ
๏ท
๏จx๏ธ
{ans: ๏ฑ }
17. Evaluate: lim x sin ๏ง
x ๏ฎ ๏ซ๏ฅ
18. Evaluate: lim
t๏ฎ0
19. Evaluate:
20. Given
Evaluate:
cos t ๏ญ 1
t2
lim1
๐ฅโ
โ2
{ans: -1/2}
4๐ฅ 2 โ 2
8๐ฅ 3
โ โ8
|2 + 3๐ฅ โ 2๐ฅ 2 |
๐(๐ฅ) =
+ 2๐ฅ โ 1
2๐ฅ โ 4
{ ๐๐๐ :
โ2
}
4
๐ฅ โ2+
(b)
๐ฅ โ2โ
(c)
21. Evaluate:
11
}
2
1
{ ๐๐๐ : }
2
{ ๐๐๐ : ๐ท๐๐ธ }
lim ๐(๐ฅ)
(a)
{ ๐๐๐ :
lim ๐(๐ฅ)
lim ๐(๐ฅ)
๐ฅโ2
lim
๐ฅโ0
โ๐ฅ + ๐ โ โ๐
2 โ โ๐ฅ + 4
{ ๐๐๐ : โ
๐คโ๐๐๐ ๐ ๐๐ ๐๐๐๐ ๐ก๐๐๐ก
2โ๐ก
is +โ, โโ, or does not exist.
๐ก โ โ2 ๐ก 2 โ 4
Give reason for your answer.
22. Determine whether
23. Evaluate:
2
โ๐
}
lim
lim โ2๐ฅ 2 โ โ2๐ฅ 2 โ 6๐ฅ
{ ๐๐๐ : ๐ท๐๐ธ }
{ ๐๐๐ :
๐ฅ โ +โ
3
โ2
}
24. Given:
๐๐ฅ 3 โ 8,
๐(๐ฅ) = {๐,
2๐ฅ 2 + ๐,
if lim ๐(๐ฅ) exists, find the value of ๐.
๐ฅ<3
๐ฅ=3
๐ฅ>3
๐ฅโ3
Hence, if f is continuous at x = 3, find d.
{ ๐๐๐ : ๐ = 1, ๐ = 19 }
25. Given:
๐ฅ 2 + 3๐ฅ โ 10
,
๐ฅ<2
|๐ฅ โ 2|
๐(๐ฅ) = ๐,
๐ฅ=2
5๐ฅ โ ๐,
2<๐ฅ<3
{ ๐,
๐ฅ>3
(a) If f is continuous at x =2, find p and q.
(b) Find r if f is discontinuous at x = 3.
{ ๐๐๐ : ๐ = โ7, ๐ = 17 }
{ ๐๐๐ : ๐ โ โ2 }
26. Determine the intervals of x where h is continuous.
โ๐ฅ 2 โ 9
โ(๐ฅ) =
(3 โ ๐ฅ)(๐ฅ + 5)
{ ๐๐๐ : (โโ, โ5) โช (โ5, โ3] โช (3, +โ) }
27. Evaluate: lim
tan 8๐
sin 4๐
28. Evaluate:
cos ๐ฅ โ 1
๐ฅ2
๐โ0
lim
๐ฅโ0
{ ๐๐๐ : 2 }
1
{ ๐๐๐ : โ }
2
© Copyright 2026 Paperzz