Chapter 23--Examples 1 Problem In the figure below, point P is at the center of the rectangle. With V=0 at infinity, what is the net electric potential at P due to the six charged particles? +5q d -2q d +3q d d P d -2q -3q d +5q 2 Find distance from corners to P d d -2q +5q s d/2 d +3q d P d -3q d d -2q +5q 3 Potentials (Voltage) is a scalar 5q V3 k s 2 3 d +5q V2 k -2q 2q d 2 d +3q 4 -2q 5 V1 k 3q s s P 2q V5 k d 2 -3q d d/2 d 3q V4 k s 1 d d d +5q 5q V6 k s 6 V Vi V1 V2 V3 V4 V5 V6 i 4 V Vi V1 V2 V3 V4 V5 V6 i V V1 V2 V3 V4 V5 V6 3q 2q 5q 3q 2q 5q V k s d d s s s 2 2 4q 10q V k d s 2 kq V 4 5 8 d 0.94kq V d 5 Problem A charge q is distributed uniformly throughout a spherical volume of radius, R. a) Setting V=0 at infinity shown that the potential at a distance r from the center, where r<R is given by q 3R r V 80 R 3 b) 2 2 What is the potential difference between a point on the surface and the sphere’s center? 6 First, use Gauss’s law to find the Efield inside and outside the sphere qenclosed Eoutside dA 0 Eoutside 4r Eoutside 2 q q 0 1 rˆ 2 40 r qenclosed Einside dA 0 Einside 4r 2 1 0 V q 4 3 R 3 1 4 3 r 0 3 q Einside rrˆ rrˆ 3 3 0 40 R Einside 4r 2 7 Outside is simpler q 1 Eoutside rˆ 2 40 r R R q 1 V f Vi E ds E dr rˆ dr 2 40 r i f q 1 R VR V | 40 r q 1 VR 40 R 8 Inside q ˆ Einside rr rrˆ 3 3 0 40 R r r q Vr VRin E ds rdr 3 40 R R R Vr VRin Vr VRin Vr VRin q 80 R 3 3 r 3 r q 80 R q 80 R r 2 |rR 2 2 R2 q 80 R 9 Voltage=Outside+Inside V VR Vr VRin q 1 q q 2 r 3 40 R 80 R 80 R q 1 q q 2 V r 3 40 R 80 R 80 R 3q q 2 2 V R r 3 3 80 R 80 R V q 80 R 2 2 ( 3 R r ) 3 10 Part b) What is the potential difference between a point on the surface and the sphere’s center? V q 80 R at r0 V 3q 80 R 2 2 ( 3 R r ) 3 VCenter V VR VCenter q 40 R 3q 80 R q 80 R 11 Okay, that is if V=0 at infinity what if V=0 at the center of the sphere? Einside qr rrˆ 3 40 R r Vr V0 0 40 R r Vr V0 0 at r R q q 40 R 3 3 rdr rdr V0 qr VRin 2 80 R 3 q 80 R But V0 0 qr 2 Vr 80 R 3 Same as previous Same as previous 12 Problem The electric potential at points in a space are given by V=2x2-3y2+5z3 What is the magnitude and direction of the electric field at the point (3,2,-1)? 13 E=-grad(V) E V V 2 x 2 3 y 2 5z 3 V V V 4x 6 y 15 z 2 x y z E (3,2,1) 4(3) xˆ 6(2) yˆ 15(1) 2 zˆ E (3,2,1) 12 xˆ 12 yˆ 15 zˆ E 12 2 12 2 152 22.6 N / C 14 Directions E (3,2,1) 12 xˆ 12 yˆ 15 zˆ y 12 tan 1 x 12 1 0 tan (1) 135 Direction w.r.t +x axis z 2 2 2 cos where r x y z 22.6 r 1 15 0 cos 138.4 Direction w.r.t +z axis 22.6 15 Problem Three +0.12 C charges form an equilateral triangle, 1.7 m on a side. Using energy that is supplied at a rate of 0.83 kW, how many days would be required to move one of the charges to the midpoint of the line joining the other two charges? 16 Draw It Initially, this charge is 1.7 m from the other two charges 0.12C 1.7 m 1.7 m 0.85 m 0.12C 1.7 m 0.85 m 0.12C Finally, this charge is 0.85 m from the other two charges 17 Potential Difference V V f Vi kq kq 2kq L L L kq kq 4kq Vf L L L 2 2 4kq 2kq V V f Vi L L 2kq V L where Vi L 1.7 m q 0.12C 18 Potential Energy 2kq2 U qV L 2(9 x109 )(0.12) 2 U 152 x106 J 1.7 where L 1.7 m q 0.12C 19 Power=Work per unit time P=W/t W=-U So 0.83 kW= 830 J/s And t= U/P=152x106/830 t=183,699 s or 51 hours or 2.12 days 20
© Copyright 2026 Paperzz