Chapter 23 23.1 a1 a2 s1 0 29 s2 0 5 s3 14 0 s4 36 0 23.3 EMV(a 1 ) = .4(55) + .1(43) + .3(29) + .2(15) = 38.0 EMV(a 2 ) = .4(26) + .1(38) + .3(43) + .2(51) = 37.3 23.5 a1 a2 a3 s1 0 15 21 s2 0 3 4 s3 20 5 0 23.7a Produce Demand a0 a1 a2 a3 s0 0 -3.00 -6.00 -9.00 s1 0 5.00 2.00 -1.00 s2 0 5.00 10.00 7.00 s3 0 5.00 10.00 15.00 b Produce Demand a0 a1 a2 a3 s0 0 3.00 6.00 9.00 s1 5.00 0 3.00 6.00 s2 10.00 5.00 0 3.00 s3 15.00 10.00 5.00 0 529 c 23.9 a 1 (flat fee) a 2 Pay per snowfall s0 -40,000 0 s1 -40,000 -18,000 s2 -40,000 -36,000 s3 -40,000 -54,000 s4 -40,000 -72,000 23.11a Payoff Table s 100 s 150 s 200 s 250 a 100 a 200 a 300 12(100)-10(100) 12(100)-9(200)+6(100) 12(100)-8.50(300)+6(200) = 200 =0 = -150 12(100)- 10(100) 12(150)-9(200)+6(50) 12(150)-8.50(300)+6(150) = 200 = 300 = 150 12(100)-10(100) 12(200)-9(200) 12(200)-8.50(300)+6(100) = 200 = 600 = 450 12(100)-10(100) 12(200)–9(200) 12(250)-8.50(300)+6(50) 530 = 200 b = 600 = 750 Opportunity Loss Table a 100 a 200 a 300 s 100 0 200 350 s 150 100 0 150 s 200 400 0 150 s 250 550 150 0 c 23.13 P(s 0 ) = .607, P(s 1 ) = .303, P(s 2 ) = .076, P(s 3 ) = .012, P(s 4 ) = .002 Payoff Table a0 a1 a2 a3 s0 0 -6,000 -12,000 -18,000 s1 0 7,000 1,000 -5,000 s2 0 7,000 14,000 8,000 s3 0 7,000 14,000 21,000 Opportunity Loss Table 531 a0 a1 a2 a3 s0 0 6,000 12,000 18,000 s1 7,000 0 6,000 12,000 s2 14,000 7,000 0 6,000 s3 21,000 14,000 7,000 0 23.14a EMV(Small) = .15(-220) + .55(-330) + .30(-440) = -346.5 EMV(Medium) = .15(-300) + .55(-320) + .30(-390) = -338.0 EMV(Large) = .15(-350) + .55(-350) + .30(-350) =-350.0 EMV decision: build a medium size plant; EMV*= -338.0 b Opportunity Loss Table Small Medium Large Low 0 80 130 Moderate 10 0 30 High 90 40 0 c EOL(Small) = .15(0) + .55(10) + .30(90) = 32.5 EOL(Medium) = .15(80) + .55(0) + .30(40) = 24.0 EOL(Large) = .15(130) + .55(30) + .30(0) = 36.0 EOL decision: build a medium size plant 23.15a P(s 10 ) = 9/90 = .10, P(s 11 ) = 18/90 = .20, P(s 12 ) = 36/90 = .40, P(s 13 ) = 27/90 = .30 Payoff Table s 10 s 11 s 12 s 13 a 10 a 11 a 12 a 13 30 10(5)- 11(2)+2 10(5)-12(2)+3.50 10(5)-13(2)+4.50 = 30 = 29.50 = 28.50 11(5)-11(2) 11(5)-12(2)+2 11(5)-13(2)+3.50 = 33 = 33 = 32.50 11(5)-11(2) 12(5)-12(2) 12(5)- 13(2)+2 = 33 = 36 = 36 11(5)-11(2) 12(5)-12(2) 13(5)-13(2) = 33 = 36 = 39 30 30 30 b EMV(a 10 ) = 30 EMV(a 11 ) = .10(30) + .20(33) + .40(33) + .30(33) = 32.70 532 EMV(a 12 ) = .10(29.50) + .20(33) + .40(36) + .30(36) = 34.75 EMV(a 13 ) = .10(28.50) + .20(32.50) + .40(36) + .30(39) = 35.45 EMV decision: buy 13 bushels 23.17 EPPI = .10(110) + .25(150) + .50(220) + .15(250) = 196 EMV(a 1 ) = .10(60) + .25(40) + .50(220) + .15(250) = 163.5 EMV(a 2 ) = .10(110) + .25(110) + .50(120) + .15(120) = 116.5 EMV(a 3 ) = .10(75) + .25(150) + .50(85) + .15(130) = 107 EVPI = EPPI – EMV* = 196 – 163.5 = 32.5 23.19 EPPI = .5(65) + .5(110) = 87.5 EMV(a 1 ) = .5(65) + .5(70) = 67.5 EMV(a 2 ) = .5(20) + .5(110) = 65.0 EMV(a 3 ) = .5(45) + .5(80) = 62.5 EMV(a 4 ) = .5(30) + .5(95) = 62.5 EVPI = EPPI – EMV* = 87.5 – 67.5 = 20 23.21 As the difference between the two prior probabilities increases EVPI decreases. 23.23 Posterior Probabilities for I 1 s j P(s j ) P(I 1 |s j ) P(s j and I 1 ) P(s j | I 1 ) __________________________________________________________________________ s1 .5 .98 (.5)(.98) = .49 .49/.515 = .951 s2 .5 .05 (.5)(.05) = .025 .025/.515 = .049 P(I 1 ) = .515 Posterior Probabilities for I 2 s j P(s j ) P(I 2 |s j ) P(s j and I 2 ) P(s j | I 2 ) __________________________________________________________________________ s1 .5 .02 (.5)(.02) = .01 .01/.485 = .021 s2 .5 .95 (.5)(.95) = .475 P(I 2 ) = .485 533 .475/.485 = .979 23.25 Prior probabilities: EMV(a 1 ) = .333(60) + .333(90) + .333(150) = 100 EMV(a 2 ) = 90 EMV* = 100 Posterior Probabilities for I 1 s j P(s j ) P(I 1 |s j ) P(s j and I 1 ) P(s j | I 1 ) __________________________________________________________________________ s1 .333 .7 (.333)(.7) = .233 .233/.467 = .499 s2 .333 .5 (.333)(.5) = .167 .167/.467 = .358 s3 .333 .2 (.333)(.2) = .067 .067/.467 = .143 P(I 1 ) = .467 Posterior Probabilities for I 2 s j P(s j ) P(I 2 |s j ) P(s j and I 2 ) P(s j | I 2 ) __________________________________________________________________________ s1 .333 .3 (.333)(.3) = .100 .100/.534 = .187 s2 .333 .5 (.333)(.5) = .167 .167/.534 = .313 s3 .333 .8 (.333)(.8) = .267 .267/.534 = .500 P(I 2 ) = .534 I 1 : EMV(a 1 ) = .499(60) + .358(90) + .143(150) = 83.61 EMV(a 2 ) = 90 I 2 : EMV(a 1 ) = .187(60) + .313(90) + .500(150) = 114.39 EMV(a 2 ) = 90 EMV` = .467(90) + .534(114.39) = 103.11 EVSI = EMV` - EMV* = 103.11 – 100 = 3.11 23.27 Prior probabilities: EMV(a 1 ) = .90(60) + .05(90) + .05(150) = 66 EMV(a 2 ) = 90 EMV* = 90 Posterior Probabilities for I 1 s j P(s j ) P(I 1 |s j ) P(s j and I 1 ) P(s j | I 1 ) __________________________________________________________________________ s1 .90 .7 (.90)(.7) = .63 .63/.665 = .947 s2 .05 .5 (.05)(.5) = .025 .025/.665 = .038 s3 .05 .2 (.05)(.2) = .01 .01/.665 = .015 P(I 1 ) = .665 534 Posterior Probabilities for I 2 s j P(s j ) P(I 2 |s j ) P(s j and I 2 ) P(s j | I 2 ) __________________________________________________________________________ s1 .90 .3 (.90)(.3) = .27 .27/.335 = .806 s2 .05 .5 (.05)(.5) = .025 .025/.335 = .075 s3 .05 .8 (.05)(.8) = .04 .04/.335 = .119 P(I 1 ) = .335 I 1 : EMV(a 1 ) = .947(60) + .038(90) + .015(150) = 62.49 EMV(a 2 ) = 90 I 2 : EMV(a 1 ) = .806(60) + .075(90) + .119(150) = 72.96 EMV(a 2 ) = 90 EMV` = .665(90) + .335(90) = 90 EVSI = EMV` - EMV* = 90 – 90 = 0 23.29 Payoff Table Demand Purchase lot Don’t purchase lot 10,000 10,000(5)-125,000 = -75,000 0 30,000 30,000(5) – 125,000 = 25,000 0 50,000 50,000(5)-125,000 = 125,000 0 EMV(purchase) = .2(-75,000) + .5(25,000) + .3(125,000) = 35,000 EMV(don’t purchase) = 0 EPPI = .2(0) + .5(25,000) + .3(125,000) = 50,000 EVPI = EPPI – EMV* = 50,000 – 35,000 = 15,000 23.31 Likelihood probabilities (binomial probabilities) P(I | s 1 ) = P(x = 3, n= 25 | p = .05) = .0930 P(I | s 2 ) = P(x = 3, n= 25 | p = .10) = .2265 P(I | s 3 ) = P(x = 3, n= 25 | p = .15) = .2174 535 Posterior Probabilities sj P(s j ) P(I | s j ) P(s j and I) P(s j | I) __________________________________________________________________________ s1 .15 .0930 (.15)(.0930) = .0140 .0140/.2029 = .0690 s2 .45 .2265 (.45)(.2265) = .1019 .1019/.2029 = .5022 s3 .40 .2174 (.40)(.2174) = .0870 P(I) = .2029 .0870/.2029 = .4288 EMV(produce) = .0690(-28 million) + .5022(2 million) + .4288(8 million) = 2.503 million EMV (don’t produce) = 0 EMV decision: produce 23.33 Payoff Table Don’t proceed Participating Households Proceed 50,000 50(500) – 55,000 = -30,000 0 100,000 100(500) – 55,000 = -5,000 0 200,000 200(500) – 55,000 = 45,000 0 300,000 300(500) – 55,000 = 95,000 0 Likelihood probabilities (binomial probabilities) P(I | s 1 ) = P(x = 3, n= 25 | p = .05) = .0930 P(I | s 2 ) = P(x = 3, n= 25 | p = .10) = .2265 P(I | s 3 ) = P(x = 3, n= 25 | p = .20) = .1358 P(I | s 4 ) = P(x = 3, n= 25 | p = .30) = .0243 Posterior Probabilities sj P(s j ) P(I | s j ) P(s j and I) P(s j | I) __________________________________________________________________________ s1 .5 .0930 (.5)(.0930) = .0465 .0465/.1305 = .3563 s2 .3 .2265 (.3)(.2265) = .0680 .0680/.1305 = .5211 s3 .1 .1358 (.1)(.1358) = .0136 .0136/.1305 = .1042 s4 .1 .0243 (.1)(.0243) = .0024 P(I) = .1305 .0024/.1305 = .0184 EMV(proceed) = .3563(-30,000) + .5211(-5,000) + .1042(45,000) + .0184(95,000) = -6,858 EMV (don’t proceed = 0 EMV decision: don’t proceed 536 23.35 Posterior Probabilities for I 1 s j P(s j ) P(I 1 |s j ) P(s j and I 1 ) P(s j | I 1 ) __________________________________________________________________________ s1 .15 .5 (.15)(.5) = .075 .075/.30 = .25 s2 .55 .3 (.55)(.3) = .165 .165/.30 = .55 s3 .30 .2 (.30)(.2) = .06 .06/.30 = .20 P(I 1 ) = .30 Posterior Probabilities for I 2 s j P(s j ) P(I 2 |s j ) P(s j and I 2 ) P(s j | I 2 ) __________________________________________________________________________ s1 .15 .3 (.15)(.3) = .045 .045/.435 = .103 s2 .55 .6 (.55)(.6) = .33 .33/.435 = .759 s3 .30 .2 (.30)(.2) = .06 .06/.435 = .138 P(I 2 ) = .435 Posterior Probabilities for I 3 s j P(s j ) P(I 3 |s j ) P(s j and I 3 ) P(s j | I 3 ) __________________________________________________________________________ s1 .15 .2 (.15)(.2) = .03 .03/.265 = .113 s2 .55 .1 (.55)(.1) = .055 .055/.265 = .208 s3 .30 .6 (.30)(.6) = .18 .18/.265 = .679 P(I 3 ) = .265 I 1 : EMV(a 1 ) = .25(-220) + .55(-330) + .20(-440) = -324.5 EMV(a 2 ) = .25(-300) + .55(-320) + .20(-390) = -329.0 EMV(a 3 ) = .251(-350) + .55(-350) + .20(-350) = -350 Optimal act: a 1 I 2 : EMV(a 1 ) = .103(-220) + .759(-330) + .138(-440) = -333.85 EMV(a 2 ) = .103(-300) + .759(-320) + .138(-390) = -327.59 EMV(a 3 ) = .103(-350) + .759(-350) + .138(-350) = -350 Optimal act: a 2 I 3 : EMV(a 1 ) = .113(-220) + .208(-330) + .679(-440) = -392.26 EMV(a 2 ) = .113(-300) + .208(-320) + .679(-390) = -365.28 EMV(a 3 ) = .113(-350) + .208(-350) + .679(-350) = -350 Optimal act: a 3 537 EMV` = .30(-324.5) + .435(-327.59) + .265(-350) = -332.60 EVSI = EMV` - EMV* = -332.60 – (-338) = 5.40 23.37 Likelihood probabilities (binomial probabilities) P(I | s 1 ) = P(x = 2, n= 25 | p = .05) = .2305 P(I | s 2 ) = P(x = 2, n= 25 | p = .10) = .2659 P(I | s 3 ) = P(x = 2, n= 25 | p = .20) = . 0708 Posterior Probabilities for I sj P(s j ) P(I|s j ) P(s j and I) P(s j | I) __________________________________________________________________________ s1 .4 .2305 (.4)(.2305) = .0922 .0922/.2127 = .4334 s2 .4 .2659 (.4)(.2659) = .1064 .1064/.2127 = .5000 s3 .2 .0708 (.2)(.0708) = .0142 .0142/.2127 = .0667 P(I) = .2127 EMV(switch) = .4334(-200,000) + .5000(300,000) + .0667(1,300,000) = 149,873 EMV(don’t switch) = 285,000 Optimal act: don’t switch 23.39 Payoff Table Percentage change Change ad Don’t change -2 -258,000 0 -1 -158,000 0 0 -58,000 0 1 42,000 0 2 142,000 0 EMV(Change ad) = -1(-258,000) + .1(-158,000) + .2(-58,000) + .3(42,000) + .3(142,000) = 2,000 EMV (don’t change) = 0. Optimal decision: change ad 538 23.41 Likelihood probabilities (binomial probabilities) P(I | s 1 ) = P(x = 1, n = 5 | p = .30) = .3602 P(I | s 2 ) = P(x = 1, n = 5 | p = .31) = .3513 P(I | s 3 ) = P(x = 1, n = 2 | p = .32) = . 3421 P(I | s 4 ) = P(x = 1, n = 2 | p = .33) = . 3325 P(I | s 5 ) = P(x = 1, n = 2 | p = .34) = . 3226 Posterior Probabilities for I sj P(s j ) P(I|s j ) P(s j and I) P(s j | I) __________________________________________________________________________ s1 .1 .3602 (.1)(.3602) = .0360 .0360/.3361 = .1072 s2 .1 .3513 (.1)(.3513) = .0351 .0351/.3361 = .1045 s3 .2 .3421 (.2)(.3421) = .0684 .0684/.3361 = .2036 s4 .3 .3325 (.3)(.3325) = .0997 .0997/.3361 = .2968 s5 .3 .3226 (.3)(.3226) = .0968 P(I) = .3361 .0968/.3361 = .2879 EMV(Change ad) = .1072(-258,000) + .1045(-158,000) + .2036(-58,000) + .2968(42,000) + .2879(142,000) = -2,620 EMV (don’t change) = 0. Optimal decision: don’t change ad 23.43a EMV(Model 101) = .2(20 million) + .4(100 million) + .4(210 million) = 128 million EMV (Model 202) = .1(70 million) + .4(100 million) + .5(150 million) = 122 million Optimal decision: Model 101 b Likelihood probabilities (binomial distribution) for Model 101 P(X =1, n = 10| p = .05) = .3151 P(X =1, n = 10| p = .10) = .3874 P(X =1, n = 10| p = .15) = .3474 Posterior Probabilities for Model 101 sj P(s j ) P(I|s j ) P(s j and I) P(s j | I) __________________________________________________________________________ s1 .2 .3151 (.2)(.3151) = .0630 .0630/.3570 = .1766 s2 .4 .3874 (.4)(.3874) = .1550 .1550/.3570 = .4341 s3 .4 .3474 (.4)(.3474) = .1390 .1390/.3570 = .3893 P(I) = .3570 539 EMV(Model 101) = .1766(20 million) + .4341(100 million) + .3893(210 million) = 128.7 million Likelihood probabilities (binomial distribution) for Model 202 P(X =9, n = 20| p = .30) = .0654 P(X =9, n = 20| p = .40) = .1597 P(X =9, n = 20| p = .50) = .1602 Posterior Probabilities for Model 202 sj P(s j ) P(I|s j ) P(s j and I) P(s j | I) __________________________________________________________________________ s1 .1 .0654 (.1)(.0654) = .0065 .0065/.1505 = .0434 s2 .4 .1597 (.4)(.1597) = .0639 .0639/.1505 = .4245 s3 .5 .1602 (.5)(.1602) = .0801 .0801/.1505 = .5321 P(I) = .1505 EMV(Model 101) = .0434(70 million) + .4245(100 million) + .5321(150 million) = 125.3 million Optimal decision: Model 101 540
© Copyright 2026 Paperzz