Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 2 Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom Zhang Tian-yi and Zheng Neng-wu∗ Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China (Received April 20, 2009) Though the electrons configuration for boron atom is simple and boron atom has long been of interest for many researchers, the theoretical studies for properties of BI are not systematic, there are only few results reported on energy levels of high excited states of boron, and transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provided only multiplet results, values for transitions between high excited states are seldom performed. In this article, by using the scheme of the weakest bound electron potential model theory calculations for energy levels of five series are performed and with the same method we give the transition probabilities between excited states with considering fine structure effects. The comprehensive set of calculations attempted in this paper could be of some value to workers in the field because of the lack of published calculations for the BI systems. The perturbations coming from foreign perturbers are taken into account in studying the energy levels. Good agreement between our results and the accepted values taken from NIST has been obtained. We also reported some values of energy levels and transition probabilities not existing on the NIST data bases. PACS numbers: 01.55.+b, 31.15.–p 1. Introduction Atomic data play a very important role in many research fields such as astrophysics, laser controlled thermonuclear fusion, and physics analytical chemistry etc. Once the values of energy levels are known, many properties of atomic systems can be determined. The abundances of elements, atomic temperature, interstellar species can be inferred from the accurate knowledge of the oscillator strengths, so the development of simple and effective methods for calculating the energy levels and transition probabilities. Oscillator strengths is useful for application to various other related fields. As a light element, BI has long been of interest and many studies of properties of BI have been carried out. Astrophysical scientists have focused their attention on the identity BI in the sun and the solar abundance of BI. As we know, accurate solar abundance determination is based on accurate values of transition rates and oscillator strengths, uncertainties in the oscillator strengths will contribute to the uncertainties in the abundance determination, so the accurate values of transition rates and oscillator strengths are useful for the astrophysical scientists’ research, but because the spectrum lines of neutral boron is blended with other lines, the determination of the solar boron abundance is uncertain. Experimentally, considering the factors such as the strengths of the line, line wing and cascade effects, the experimental values of ∗ corresponding author; e-mail: [email protected] boron seldom reach a precision of 20%, sometimes only are estimated to be accurate about 50%. From a theoretical point of view the boron atom is an ideal system to be studied. The ground configuration is 1s2 2s2 2p with three electrons outside a compact k-shell core, the small number of electrons makes the theoretical calculations simple, and accurate results are able to be obtained. In recent years, attention is also concentrated on excited states that are formed by excitation of 2p electron from ground states 1s2 2s2 2p of boron atom, because the 1s2 2s2 nl excited state is similar to a one-electron system with [He] 2s2 core. However, the studies of atom boron are not systematic, there are only few results reported on energy levels of high excited states of boron, and current transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provide only multiplet results, values for transitions between high excited states are seldom performed. Experimentally, in 1966, with the phase-shift method, radiative lifetimes of fourteen of the uv multiplets in BI were measured by Lawrence et al., and the accuracy of their results was estimated to be 10–20% [1]. In 1969, seven mean lines were determined for excited neutral and ionic states of boron by Andersen by using the foil-excitation technique [2]. By using a hollow-cathode light source to produce the uv spectrum of BI, Goorvitch et al. measured the transitions 2s2 2p 2P –2s2 nd 2D (n = 3–7), 2s2 2p 2P –2s2 ns 2S (n = 3–5), and 2s2 2p 2P –2s2p2 2S in 1972 [3]. Roig et al. studied the absorption spectrum of (141) 142 Zhang Tian-yi, Zheng Neng-wu BI by flash pyrolysis technique and observed transitions from both the 2s2 2p 2P ground state and 2s2p2 4P state in 1976 [4]. In 1979, by using the projective electron spectroscopy method, the ejected-electron spectra of highly excited autoionizing levels of BI have been studied by Rødbro et al. [5]. In 1987, for the first time the laser spectroscopic techniques have been used to investigate the neutral boron by Bergström et al. and the radiative lifetimes for the 3p 2P and 4p 2P states have been reported in their work [6]. In the course of investigating the ionization spectroscopy of boron-containing radicals, new np (n = 5–9) Rydberg states were discovered by Irikura et al. in 1992 [7]. In the same year, Lynam et al. obtained the spectra of boron in a laser produced plasma experiment and predicted transition energies, oscillator strengths and intensities for the 1s2 2s2 2p 2P –1s2s2 2pnp, n ≥ 2 of BI [8]. In 2001, Glab et al. reported 11 B 2s2 3s–2s2 np (n = 30–69) transition energies [9]. In the same year, radiative lifetimes in the s and d sequences of neutral boron were investigated both experimentally and theoretically by Lundberg et al., they first measured the radiative lifetimes in BI 2s2 ns 2S (n ≤ 7) and 2s2 nd 2D (n ≤ 6) employing selective laser and then using multiconfiguration Hartree–Fock (MCHF) method to make theoretical calculations [10]. There are also many theoretical methods developed to obtain the energy levels and transition probabilities of atoms and ions. Among all the methods, MCHF method or MCHF combined with other method are the ones that are most widely used in calculating energy levels and transition probabilities of BI. In 1978, Dankwort and Trefftz used a MCHF ansatz with all Breit–Pauli (BP) corrections to calculate transition probabilities of very highly ionized boron-like series up to Fe21+ [11]. After two years, the relativistic multiconfigurational Dirac– Hartree–Fock (MCDHF) method were used to study the oscillator strengths and transition energies for E1 and M1 transitions in boron by Samii et al. [12]. In 1994, with the MCHF method, calculations have been performed for 1s2 2s2 ns 2S n = 3–6, 1s2 2s2 np 2P n = 2–6, 1s2 2s2 nd 2D n = 3–5 states by Carlsson et al.; in this work, they used increasing active set to calculate the transition matrix, the largest one is 7s6p5d4f 3g [13]. In 1996, Jönsson et al. used MCHF approach combined with configuration interaction (CI) approach to study the transition probabilities for allowed 2s2 2pn –2s2pn+1 transitions in BI [14], after 4 years the same group used the BP Hamiltonian to calculate the configuration interaction in MCHF method, and applications are presented for the B-like spectrum [15], then they extend this method to study the Be-like to Ne-like sequences [16], today’s computer power make the complex calculation process possible. From the work mentioned above we can see that in the MCHF method the completeness of the set of configurations used determine the accuracy of results, and the possible configurations are so many that only some can be selected for practice which limits the accuracy of the method, the more accurate the more configurations are needed and the more complex the calculation will be. There are also many other method for BI study, such as nuclear-charge-expansion (NCE) method, CI method, superposition of configurations (SOC) method, Stieltjes imaging (SI) method, multiconfiguration frozen-core (MC frozen-core) method, multichannel quantum defect theory (MQDT) and many-body perturbation theory (MBPT) [17–23], take MQDT for example the complexity of calculation rises quickly as the increase of the number of channels included in. Since the weakest bound electron potential model (WBEPM) theory is presented, many studies have been performed to study the atomic properties for many systems [24–37]. In the present work, we investigate the energy levels, transition probabilities and oscillator strengths for BI using WBEPM theory, the results are compared with the experimental values and the results from other methods. 2. Theory and method The WBEPM theory was suggested by one of the authors [38–41]. The WBEPM theory is based on the followings: (1) the considerations of successive ionization of free particles (atom and molecule); (2) the choice of zero of energy in quantum mechanics; (3) the separation of the weakest bound electron (WBE) and nonweakest bound electrons (NWBE). In the process of successive ionization the electrons are pealed off one by one, the WBE is the most active electron in a given system, and also most easily excited or ionized, and all other electrons in the system are called NWBE. The K electrons in the K-electrons system play sooner or later as a WBE in the ionization procedure, by removed of the first, second . . . K-th WBE, the Kelectrons system can give rise to K stage of ionization, each stage of successive ionization processes corresponds to the remove of a WBE from the corresponding subsystem. There is only one WBE which will be removed during the ionization process, other electrons called NWBE will not be removed during the ionization process, so in terms of ionization, the WBE differs in behavior from the NWBE of the present system, so we can separate the WBE and the NWBE, and the problem of a many-electron system can be treated as one-electron problems of K WBEs. The single-electron Schrödinger equation of the WBEi is (in this paper, all the energy terms in expressions are in Hartree units) · ¸ 1 2 − ∇i + V (ri ) ψi = εi ψi . (1) 2 We supposed that the WBE moves in the central potential field due to the ion-core formed nucleus and NWBEs. Considering the effect of penetrations, polarization and shielding, we suggest the potential function of WBEi is d(d + 1) + 2dl −Z 0 + V (ri ) = , (2) ri 2ri2 where Z 0 is the effective nuclear charge, l is the angular Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom quantum number of the weakest bound electron and d is a parameter which modifies the integral quantum number ni and angular quantum number li into nonintegral n0i and li0 . Substituting Eq. (2) into Eq. (1), and solving the Schrödinger equation of the WBEi, one can obtain the expression of energy eigenvalue of WBEi: Z 02 ε = − 02 , (3) 2n 0 where n is the effective principal quantum number with n0 = n + d. Now let us use the WBEPM theory to study atomic levels of the excited states of BI. The electronic configuration of BI in its ground state is 1s2 2s2 2p. The 2p electrons are excited easily. The nl electron in the excited states 1s2 2s2 nl formed by excitation of 2p electron can be assigned as WBE. Exciting WBE to various orbitals will produce various series of electronic configurations, each configuration may derive several terms and each term may go on to produce different fine structures. So the concept of spectrum-level-like series has been introduced to classify the energy levels [42]. Aspectrum-level-like series is a series that is composed of energy levels with the same spectral level symbol in a given electronic configuration series of a system. From the definition, take BI for example, the series B 1s2 2s2 nd 2D3/2 is a spectrum-level-like series. In a given spectrum-level-like series, energy levels depend on the principal quantum number of the weakest bound electron only Z 02 Z 02 T (n) ≈ Tlim − 02 = Tlim − . (4a) 2n 2(n + d)2 Because the WBE moving in the field of the ion-core is somewhat analogous to the valence electron in alkali metals, and the quantum defect theory (QDT) provides a feasible way to study levels in high Rydberg states in alkali metals, we employ the representation of energy in QDT to do the transformation Z0 Znet = . (4b) n+d n − δn Then we get 2 Znet T (n) = Tlim − . (4c) 2(n − δn )2 For neutral atoms the net nuclear charge Znet = 1 and δn equal to the quantum defect in QDT Martin’s [43] expression is used to determine δn : δn (εn ) = a1 + a2 m−2 + a3 m−4 + a4 m−6 , (5) in which m = n − δ0 and δ0 is the quantum defect of the lowest level in a given level series. It should be noted that formula (5) is only for unperturbed series, but to our knowledge, for BI atom, the series 1s2 2s2 ns 2S are perturbed by state 1s2 2s2p2 2S strongly, so the perturbations must be taken into account when calculating the energy levels. On the basis of Martin’s and Langer’s [44] works, we proposed an expression for calculating levels which are perturbed by foreign 143 levels [25]: δn (εn ) = 4 X i=1 ai m−2(i−1) + P X j=1 bj m−2 − εj with m = n − δ0 , (6) (7) 2(Tlim − Tj,perturber ) . (8) 2 Znet Here, Tj,perturber is the energy of perturbing levels, and P is the number of the foreign perturbing levels. We used the first (4 + P ) experiment data to fit the ai and bi by least-squares method, then the higher ones in a series can be predicted with these parameters. The transition probability of (nf , lf ) to (ni , li ) for spontaneous emission (Ef > Ei ) is 4 2 Af i = α3 (Ef − Ei )3 |hnf lf |r|ni li i| (2Lf + 1) 3 ×(2Li + 1)(2Ji + 1)l> × W 2 (li Li lf Lf ; Lc 1) εj = ×W 2 (Li Ji Lf Jf ; S1) (9) in a.u. [45] where l> = max(lf , li ), α is the fine structure constant, Ef and Ei (in Hartree unit) are the energies of (nf , lf ) and (ni , li ), respectively, Lc is the total orbital angular momentum of atomic core and W (abcd; ef ) is the Racah coefficient [46]. ¯ ¯ ® The matrix elements nf lf ¯rk ¯ ni li can be derived as [47]: !lf0 µ Ã ¶l0 0 ¯ k¯ ® 2Z 2Zi0 i f nf +ni +lf +li ¯ ¯ nf lf r ni li = (−1) n0f n0i ³ ´ −1/2 !−lf0 −li0 −k−3 Ã 04 nf Γ n0f + lf0 + 1 Zf0 Zi0 03 × + 0 n0f ni 4Zf (nf − lf − 1)! #−1/2 nf −lf −1 n −l −1 04 iX i X ni Γ (n0i + li0 + 1) × 03 4Zi (ni − li − 1)! m1 =0 m2 =0 Ã !m1 +m2 Ã !−m1 −m2 m2 0 0 0 Zf0 Z (−1) Z Z f − 0i − 0i m1 !m2 ! n0f ni n0f ni " ¡ ¢ ×Γ lf0 + li0 + m1 + m2 + k + 3 ! li0 − lf0 + k + m2 + 1 × n0f − lf0 − 1 − m1 − m3 m3 =0 ! Ã lf0 − li0 + k + m1 + 1 × n0i − li0 − 1 − m2 − m3 Ã !# li0 + lf0 + k + m1 + m2 + m3 + 2 × , m3 s X Ã (10) where S = min (nf − lf − 1 − m1 , ni − li − 1 − m2 ) and k > −lf0 − li0 − 3. If we let k = 1 and i = f , the following equation can be derived from Eq. (10), we can get the radial expectation 144 Zhang Tian-yi, Zheng Neng-wu value of the WBE 02 3n − l0 (l0 + 1) hrinl = . (11) 2Z 0 Equations (4a) and (11) constitute a set of coupled equations ( Z 02 T (n) ≈ Tlim − 2n 02 , 02 (12) 3n −l0 (l0 +1) hri = . 2Z 0 Tlim and T (n) can be taken from the experimental data; in this paper they are taken from NIST website [48]. The hri value can be calculated from many theoretical methods such as Roothanna Hartree–Fock (RHF), Hartree–Kohn–Sham (HKS), multiconfiguration Hartree–Fock (MCHF), self-interaction-corrected local spindensity (SIC-LSD), time-dependent Hartree–Fock (TDHF), Hartree–Slater and numerical Coulomb approximation (NCA) etc. [49–55]. In this paper NCA is employed to evaluate hri. NCA is a good approximation for excited states, its producing is simple and its results agree well with other theoretical methods. After obtaining the values of Z 0 , n0 and l0 , the matrix element in Eq. (9) can be calculated, transition probabilities between two levels (nf , lf ) and (ni , li ) can be calculated further. 3. Results and discussion Energy levels, transition probabilities and oscillator strengths of atomic BI are studied, some of the results are listed here. The energy levels for five spectrum-level-like series 1s2 2s2 ns 2S1/2 , 1s2 2s2 nd 2D3/2 , 1s2 2s2 nd 2D5/2 , 1s2 2s2 nf 2F5/2 , and 1s2 2s2 nf 2F7/2 are listed in Tables I–V, and for space reason when n > 30 some results are omitted. Experimental data are listed in Tables I–V for comparison. In Table I and Table II, we list the results calculated by using multi-channel quantum defect theory (MQDT) by Liang nad Wang [22]; in their work, the energy levels for 1s2 2s2 ns 2S1/2 (n = 2–25) and 1s2 2s2 nd 2D3/2 (n = 2–25) series are given; from their work we can see that in MQDT the complexion of calculation rises quickly as the increase of the number of channels included in, relatively our calculation procedures are quite simple. If a foreign level has the same parity and the same quantum number J with a spectrum-level-like series, this foreign level will perturb some energy levels in this series, the perturbing strength is dependent on the energy difference between the perturbing level and the perturbed level. In the treatment of the series 1s2 2s2 ns 2S1/2 , we take into account the effects of perturbation come from the 1s2 2s2p2 2S1/2 level. In Table I we give the results with the consideration of foreign levels of 1s2 2s2 ns 2S1/2 series, in order to take a comparison we also give the results without the perturbations. Form Table I we can see that the results without the perturbations are bad, the maximal deviation is −358.4719 (n = 7); when we introduce the perturbations to our calculation, the results TABLE I Calculated results of energy levels (cm−1 ) for BI 1s2 2s2 ns 2S1/2 (limit is 66928.10 cm−1 ) series compared with experimental data (cm−1 ) and other results (cm−1 ). Without perturbation With perturbations n Texp [48] a Tcal b Tcal Tother [22] 3 40039.65 40039.65 40039.65 40040.76 4 55010.181 55010.18 55010.18 55011.50 5 60146.45 60146.45 60146.45 60145.64 6 62482.23 62482.23 62482.23 62482.47 7 64156.00 63797.53 64156.00 64155.59 8 64792.07 64613.03 64767.58 64791.79 9 65270.16 65151.20 65258.17 65270.12 10 65609.35 65523.57 65602.67 65609.48 11 65791.18 65851.41 65855.68 12 65989.59 66036.42 66039.28 13 66140.58 66177.63 66179.63 14 66258.05 66287.82 66289.27 15 66351.19 66375.43 66376.50 16 66426.24 66446.22 66447.03 17 66487.60 66504.24 66504.86 18 66538.38 66552.38 66552.86 19 66580.88 66592.76 66593.14 20 66616.80 66626.97 66627.27 21 66647.43 66656.20 66656.43 22 66673.76 66681.37 66681.55 23 66696.56 66703.20 66703.34 24 66716.42 66722.26 25 66733.84 66738.99 26 66749.20 66753.77 27 66762.80 66766.88 28 66774.91 66778.56 29 66785.74 66789.02 30 66795.46 66798.41 35 66831.82 66833.67 40 66855.05 66856.28 45 66870.79 66871.65 50 66881.94 66882.56 55 66890.13 66890.59 60 66896.31 66896.67 65 66901.10 66901.38 70 66904.89 66905.11 75 66907.93 66908.11 80 66910.41 66910.56 85 66912.46 66912.58 66739.07 a Tcal are energy levels calculated not including perturbing level. b Tcal are energy levels calculated including perturbing level. The perturbing level is 1s2 2s2p2 2S1/2 (63560.64 cm−1 ) which is selected from experimental values in [48]. are greatly improved, the maximal deviation is −24.4923 (n = 8). From a comparison of these results, we suggest that foreign levels should be taken into account. The Martin expression is not available for perturbed levels, so we derived the expression (6) to calculate the perturbed series. The parameters a and b for each series are listed in Table VI, so one can easily obtain any energy levels in the series. These parameters are obtained by fitting the Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom TABLE II Calculated results of energy levels (cm−1 ) for BI 1s2 2s2 nd 2D3/2 (limit is 66928.10 cm−1 ) series compared with experimental data (cm−1 ) and other results (cm−1 ). 145 TABLE III Calculated results of energy levels (cm−1 ) for BI 1s2 2s2 nd 2D5/2 (limit is 66928.10 cm−1 ) series compared with experimental data (cm−1 ). n Texp [48] Tcal n Texp [48] Tcal n Texp [48] Tcal Tother [22] 3 54767.80 54767.80 28 66787.66 66787.71 3 54767.63 54767.63 54767.67 4 59993.51 59993.51 29 66797.25 66797.24 4 59993.41 59993.41 59993.39 5 62485.58 62485.58 30 66805.63 66805.83 5 62485.42 62485.42 62485.45 6 63845.29 63845.29 31 66813.66 66813.60 6 63845.29 63845.29 63845.16 7 64665.34 64665.40 32 66821.00 66820.66 7 64665.30 64665.48 64665.33 8 65197.29 65197.34 33 66827.01 66827.08 8 65197.31 65197.44 65197.30 9 65561.64 65561.71 34 66832.68 66832.94 9 65561.64 65561.81 65561.69 10 65822.12 65822.12 35 66838.33 66838.30 10 65822.12 65822.21 65822.09 11 66014.58 66014.63 36 66843.28 66843.23 11 66014.58 66014.70 66014.59 12 66160.92 66160.94 37 66847.81 66847.76 12 66160.92 66161.01 66160.90 13 66274.65 66274.73 38 66851.99 66851.94 13 66274.65 66274.79 66274.68 14 66364.90 66364.97 39 66855.78 66855.80 14 66364.90 66365.01 66364.91 15 66437.62 66437.72 40 66859.37 15 66437.62 66437.76 66437.66 16 66497.15 66497.24 45 66873.81 16 66497.15 66497.28 66497.17 17 66546.47 66546.55 50 66884.13 17 66546.47 66546.58 66546.47 18 66587.77 66587.85 55 66891.77 18 66587.77 66587.88 66587.77 19 66622.72 66622.80 60 66897.57 19 66622.72 66622.82 66622.71 20 66652.52 66652.62 65 66902.09 20 66652.52 66652.64 66652.54 21 66678.17 66678.28 70 66905.68 21 66678.17 66678.30 66678.19 22 66700.43 66700.52 75 66908.57 22 66700.43 66700.53 66700.43 23 66719.79 66719.91 80 66910.94 23 66719.79 66719.92 24 66736.82 66736.92 85 66912.90 24 66736.82 66736.94 66736.83 25 66752.02 66751.94 90 66914.54 25 66752.02 66751.95 66751.84 26 66765.22 66765.25 95 66915.93 26 66765.22 66765.26 27 66777.12 66777.10 100 66917.12 27 66777.12 66777.11 28 66787.66 66787.72 29 66797.25 66797.25 30 66805.63 66805.84 31 66813.66 66813.61 32 66821.00 66820.66 33 66827.01 66827.08 34 66832.68 66832.94 35 66838.33 66838.31 36 66843.28 66843.23 37 66847.81 66847.76 38 66851.99 66851.94 39 66855.78 66855.80 40 66859.37 45 66873.81 50 66884.13 55 66891.77 60 66897.58 65 66902.09 70 66905.68 75 66908.57 80 66910.94 85 66912.90 90 66914.54 95 66915.93 100 66917.12 first (4 + P ) experiment data, by least-squares method in expressions (5) and (6), P is the number of levels perturbing, so the choice of the values used to determine the parameters is very important. In this work we chose the experimental values from NIST database [48]. NIST scientists have tried their best to collect accepted data from the original sources, the values collected by NIST database are the best available data at present. A coupled Eq. (12) is derived for transition calculations. If the energy levels T (n) and the expectation values hri are known, the parameters Z 0 , n0 and l0 needed for transition calculations can be obtained. The values of T (n) are also taken from NIST database [48] and hri evaluated using NCA method. The spin-allowed transition probabilities and oscillator strength lines in BI are calculated, and the results are listed in Table VII, we compared our results to NIST data [48], the accuracy rating of NIST values are given in the sixth column in Table VII. Presently the study for transitions between individual lines for BI are quite limited both experimentally and theoretically, and the existing values are generally for transitions involving ground states and lower excited states, transitions involving highly excited states are not studied by other methods. 146 Zhang Tian-yi, Zheng Neng-wu TABLE IV Calculated results of energy levels (cm−1 ) for BI 1s2 2s2 nf 2F5/2 (limit is 66928.10 cm−1 ) series compared with experimental data (cm−1 ). TABLE V Calculated results of energy levels (cm−1 ) for BI 1s2 2s2 nf 2F7/2 (limit is 66928.10 cm−1 ) series compared with experimental data (cm−1 ). n Texp [48] Tcal n Tcal n Texp [48] Tcal n 4 60031.03 60031.03 25 66752.30 4 60031.03 60031.03 25 66752.30 5 62516.52 62516.52 26 66765.57 5 62516.52 62516.52 26 66765.57 6 63866.33 63866.33 27 66777.40 6 63866.33 63866.33 27 66777.40 7 64679.74 64679.74 28 66787.97 7 64679.74 64679.74 28 66787.97 8 65207.50 65207.39 29 66797.48 8 65207.50 65207.39 29 66797.48 9 65569.06 65568.98 30 66806.04 9 65569.06 65568.98 30 66806.04 10 65827.38 65827.52 35 66838.44 10 65827.38 65827.52 35 66838.44 11 66018.75 66018.75 40 66859.46 11 66018.75 40 66859.46 12 66164.14 45 66873.87 12 66164.14 45 66873.87 13 66277.27 50 66884.18 13 66277.27 50 66884.18 14 66367.01 55 66891.80 14 66367.01 55 66891.80 15 66439.40 60 66897.60 15 66439.40 60 66897.60 16 66498.63 65 66902.11 16 66498.63 65 66902.11 17 66547.71 70 66905.69 17 66547.71 70 66905.69 18 66588.83 75 66908.58 18 66588.83 75 66908.58 19 66623.63 80 66910.95 19 66623.63 80 66910.95 20 66653.34 85 66912.91 20 66653.34 85 66912.91 21 66678.90 90 66914.55 21 66678.90 90 66914.55 22 66701.05 95 66915.94 22 66701.05 95 66915.94 23 66720.38 100 66917.12 23 66720.38 100 66917.12 24 66737.34 24 66737.34 Texp [48] Texp [48] Tcal TABLE VI Parameters a and b of every tables. Table Table Table Table Table Table a Ia Ib II III IV V a1 a2 a3 1.24532 0.93534 0.04127 0.04207 0.01563 0.01563 −7.61248 0.51214 −0.26264 −0.31054 −0.11462 −0.11462 61.96560 −4.16833 0.01118 0.81200 1.37123 1.37123 without perturbation; b a4 b1 b2 b3 b4 −144.14765 11.27022 0.00074 −11.98405 −15.91133 −10.70191 −10.70191 with perturbation However, the transitions probabilities for individual line have many applications in the corresponding fields, so present calculation is very significant. Good agreement is obtained from the comparison in this paper. We predict many values in the case of the NIST values not existing, the good agreement enables us to believe the predicted results are reliable. Because most theoretical methods are only used to obtain transition probabilities for multiplets, in order to make the comparison with the other method and test the reliability of our method further, we also calculate transition probabilities and oscillator strengths BI for multi- plets. The results are listed in Table VIII. In Table VIII the transition rates performed using the MCHF method [10] are listed in the fifth column and the oscillator strength calculated by other method are given in the sixth column. From the comparison our results are generally closer to the accepted values than the others and in the case of the accepted values do not exist, our results are close to the others. In conclusion, the WBEPM theory is successful in studying the energy levels and transition probabilities for BI. The calculation procedure is simple and the results are accurate. Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom TABLE VII Transition probabilities and oscillator strengths for individual lines of BI and comparison with accepted values. Transition 0 3s 2S1/2 –3p 2P1/2 2 2 0 3s S1/2 –3p P3/2 0 3s 2S1/2 –4p 2P1/2 2 2 0 3s S1/2 –4p P3/2 0 4s 2S1/2 –3p 2P1/2 0 4s 2S1/2 –3p 2P3/2 2 2 0 4s S1/2 –4p P1/2 0 4s 2S1/2 –4p 2P3/2 0 5s 2S1/2 –3p 2P1/2 2 2 0 5s S1/2 –3p P3/2 0 5s 2S1/2 –4p 2P1/2 0 5s 2S1/2 –4p 2P3/2 2 2 0 6s S1/2 –3p P1/2 0 6s 2S1/2 –3p 2P3/2 2 2 0 6s S1/2 –4p P1/2 0 6s 2S1/2 –4p 2P3/2 0 7s 2S1/2 –3p 2P1/2 2 2 0 7s S1/2 –3p P3/2 0 7s 2S1/2 –4p 2P1/2 0 7s 2S1/2 –4p 2P3/2 2 2 0 8s S1/2 –3p P1/2 0 8s 2S1/2 –3p 2P3/2 0 8s 2S1/2 –4p 2P1/2 2 2 0 8s S1/2 –4p P3/2 0 9s 2S1/2 –3p 2P1/2 0 9s 2S1/2 –3p 2P3/2 2 2 0 9s S1/2 –4p P1/2 0 9s 2S1/2 –4p 2P3/2 0 10s 2S1/2 –3p 2P1/2 2 2 0 10s S1/2 –3p P3/2 0 10s 2S1/2 –4p 2P1/2 0 10s 2S1/2 –4p 2P3/2 2 0 2 3p P1/2 –3d D3/2 0 3p 2P1/2 –4d 2D3/2 0 3p 2P1/2 –5d 2D3/2 2 0 3p P1/2 –6d 2D3/2 0 3p 2P1/2 –7d 2D3/2 0 3p 2P1/2 –8d 2D3/2 2 0 3p P1/2 –9d 2D3/2 0 3p 2P1/2 –10d 2D3/2 0 3p 2P3/2 –3d 2D3/2 2 0 3p P3/2 –3d 2D5/2 Present transition NIST transition Present NIST oscillator probabilities probabilities oscillator strengths 8 −1 8 −1 [10 s ] [10 s ] [48] strengths [48] 1.73×10−1 1.73×10−1 3.84×10−3 3.85×10−3 4.91×10−2 9.83×10−2 2.65×10−2 2.66×10−2 1.93×10−2 3.85×10−2 1.21×10−2 2.42×10−2 8.76×10−3 1.75×10−2 4.33×10−3 8.65×10−3 3.93×10−3 7.87×10−3 2.60×10−3 5.21×10−3 3.54×10−3 7.08×10−3 2.02×10−3 4.03×10−3 2.47×10−3 4.94×10−3 1.35×10−3 2.70×10−3 1.76×10−3 3.51×10−3 9.39×10−4 1.88×10−3 1.13×10−1 8.66×10−4 3.13×10−4 6.88×10−4 6.91×10−4 5.82×10−4 4.70×10−4 3.73×10−4 2.26×10−2 1.36×10−1 0.174 0.174 0.051 0.103 0.0162 0.0324 0.115 0.023 0.138 3.53×10−1 7.07×10−1 1.83×10−3 3.67×10−3 1.80×10−1 1.80×10−1 5.16×10−1 1.03 2.17×10−2 2.17×10−2 3.25×10−1 3.26×10−1 6.82×10−3 6.82×10−3 2.94×10−2 2.94×10−2 2.44×10−3 2.44×10−3 9.62×10−3 9.62×10−3 2.03×10−3 2.03×10−3 6.16×10−3 6.16×10−3 1.33×10−3 1.33×10−3 3.61×10−3 3.61×10−3 9.11×10−4 9.11×10−4 2.30×10−3 2.30×10−3 8.96×10−1 2.00×10−3 4.87×10−4 8.89×10−4 8.03×10−4 6.35×10−4 4.91×10−4 3.77×10−4 8.96×10−2 8.06×10−1 Accuraccy of NIST [48] 0.355 0.710 C C 0.19 0.189 C C 0.0183 0.0183 C C 0.91 C 0.091 0.819 C C 147 148 Zhang Tian-yi, Zheng Neng-wu TABLE VII (cont.) TABLE VII (cont.) Present transition Present oscillator probabilities [108 s−1 ] strengths 0 3p 2P3/2 –4d 2D3/2 1.72×10−4 1.99×10−4 0 3p 2P3/2 –4d 2D5/2 1.03×10−3 0 3p 2P3/2 –5d 2D3/2 6.31×10−5 0 3p 2P3/2 –5d 2D5/2 Transition 2 0 3p P3/2 –6d 2D3/2 2 0 3p P3/2 –6d 2D5/2 0 3p 2P3/2 –7d 2D3/2 2 0 3p P3/2 –7d 2D5/2 0 3p 2P3/2 –8d 2D3/2 2 0 3p P3/2 –8d 2D5/2 0 3p 2P3/2 –9d 2D3/2 0 3p 2P3/2 –9d 2D5/2 0 3p 2P3/2 –10d 2D3/2 0 3p 2P3/2 –10d 2D5/2 2 0 4p P1/2 –3d 2D3/2 0 4p 2P1/2 –4d 2D3/2 2 0 4p P1/2 –5d 2D3/2 0 4p 2P1/2 –6d 2D3/2 0 4p 2P1/2 –7d 2D3/2 0 4p 2P1/2 –8d 2D3/2 0 4p 2P1/2 –9d 2D3/2 2 0 4p P1/2 –10d 2D3/2 0 4p 2P3/2 –3d 2D3/2 2 0 4p P3/2 –3d 2D5/2 0 4p 2P3/2 –4d 2D3/2 2 0 4p P3/2 –4d 2D5/2 0 4p 2P3/2 –5d 2D3/2 0 4p 2P3/2 –5d 2D5/2 0 4p 2P3/2 –6d 2D3/2 0 4p 2P3/2 –6d 2D5/2 2 0 4p P3/2 –7d 2D3/2 0 4p 2P3/2 –7d 2D5/2 2 0 4p P3/2 –8d 2D3/2 0 4p 2P3/2 –8d 2D5/2 2 0 4p P3/2 –9d 2D3/2 0 4p 2P3/2 –9d 2D5/2 0 4p 2P3/2 –10d 2D3/2 0 4p 2P3/2 –10d 2D5/2 0 3d 2D3/2 –4f 2F5/2 2 2 0 3d D3/2 –5f F5/2 0 3d 2D3/2 –6f 2F5/2 2 2 0 3d D3/2 –7f F5/2 0 3d 2D3/2 –8f 2F5/2 2 2 0 3d D3/2 –9f F5/2 0 3d 2D3/2 –10f 2F5/2 0 3d 2D3/2 –11f 2F5/2 0 3d 2D5/2 –4f 2F5/2 0 3d 2D5/2 –4f 2F7/2 2 2 0 3d D5/2 –5f F5/2 0 3d 2D5/2 –5f 2F7/2 2 2 0 3d D5/2 –6f F5/2 0 3d 2D5/2 –6f 2F7/2 2 2 0 3d D5/2 –7f F5/2 Transition Present transition Present oscillator probabilities [108 s−1 ] strengths 0 3d 2D5/2 –7f 2F7/2 1.10×10−2 2.24×10−2 1.79×10−3 0 3d 2D5/2 –8f 2F5/2 4.56×10−4 6.28×10−4 4.91×10−5 0 3d 2D5/2 –8f 2F7/2 6.85×10−3 1.26×10−2 3.76×10−4 4.40×10−4 0 3d 2D5/2 –9f 2F5/2 3.05×10−4 3.92×10−4 1.38×10 −4 8.93×10 −5 4.57×10 −3 7.83×10−3 8.29×10 −4 8.04×10 −4 2.14×10 −4 2.62×10−4 1.39×10 −4 8.06×10 −5 3.20×10 −3 5.24×10−3 8.30×10 −4 7.25×10 −4 1.57×10 −4 1.86×10−4 1.17×10 −4 6.37×10 −5 1.08×10 −7 1.72×10−2 7.02×10 −4 5.74×10 −4 2.44×10 −2 8.61×10−1 1.23×10−2 1.85×10−1 7.07×10−3 7.24×10−2 4.46×10−3 3.69×10−2 3.01×10 −3 2.17×10−2 2.12×10 −3 1.40×10−2 1.56×10 −3 9.68×10−3 7.68×10 −9 8.18×10−4 1.15×10 −7 1.64×10−2 1.74×10−3 4.10×10−2 2.61×10−2 8.20×10−1 8.80×10−4 8.80×10−3 1.32×10 −2 1.76×10−1 5.05×10 −4 3.45×10−3 7.57×10 −3 6.89×10−2 3.18×10 −4 1.76×10−3 4.78×10 −3 3.51×10−2 2.15×10 −4 1.04×10−3 3.22×10−3 2.07×10−2 1.51×10−4 6.67×10−4 2.27×10−3 1.33×10−2 1.12×10 −4 4.61×10−4 6.37×10 −4 1.06×10−2 2.19×10 −7 5.10×10−2 6.68×10 −3 7.87×10−1 4.11×10 −3 1.92×10−1 2.64×10 −3 8.02×10−2 1.80×10−3 4.25×10−2 1.28×10−3 2.57×10−2 9.43×10−4 1.70×10−2 3.03×10 −5 7.53×10−4 6.06×10 −4 1.13×10−2 1.54×10 −8 2.42×10−3 2.31×10 −7 4.83×10−2 4.77×10 −4 3.75×10−2 7.15×10−3 7.50×10−1 2.94×10−4 9.14×10−3 4.40×10−3 1.83×10−1 1.89×10 −4 3.82×10−3 2.83×10 −3 7.64×10−2 1.28×10 −4 2.03×10−3 1.93×10 −3 4.05×10−2 9.12×10 −5 1.23×10−3 1.37×10 −3 2.45×10−2 9.43×10−5 4.92×10−5 5.66×10−4 4.43×10−4 7.48×10−5 3.78×10−5 4.49×10 −4 3.41×10 −4 1.80×10 −2 1.48×10 −1 2.04×10 −2 1.19×10 −3 9.92×10 −5 1.26 1.62×10 −2 8.10×10 −4 2.50×10−6 1.58×10−5 2.68×10−6 1.46×10−5 8.74×10−6 4.34×10−5 1.15×10 −5 5.33×10 −5 1.80×10 −3 2.97×10 −2 1.62×10 −2 1.78×10 −1 4.08×10 −3 1.26×10 −1 2.45×10 −2 2.38×10 −4 1.13 1.62×10 −3 1.43×10−3 1.46×10−2 1.97×10−5 8.04×10−5 1.18×10−4 7.23×10−4 4.80×10 −7 1.52×10 −6 2.94×10 −6 1.40×10 −5 5.52×10 −7 1.51×10 −6 3.35×10 −6 1.37×10 −5 1.77×10 −6 4.40×10 −6 1.06×10 −5 3.96×10 −5 2.32×10−6 5.39×10−6 1.39×10−5 4.85×10−5 1.26×10−1 1.02 3.98×10 −2 1.84×10 −2 1.03×10 −2 6.39×10 −3 4.27×10 −3 1.49×10 −1 5.01×10 −2 2.35×10 −2 1.32×10 −2 8.23×10 −3 2.99×10−3 5.50×10−3 2.20×10−3 3.91×10−3 9.02×10−3 4.88×10−2 1.35×10 −1 9.76×10 −1 2.84×10 −3 7.09×10 −3 4.26×10 −2 1.42×10 −1 1.32×10 −3 2.39×10 −3 1.98×10 −2 4.77×10 −2 7.34×10 −4 1.12×10 −3 2 2 0 3d D5/2 –9f F7/2 2 2 0 3d D5/2 –10f F5/2 0 3d 2D5/2 –10f 2F7/2 2 2 0 3d D5/2 –11f F5/2 0 4d 2D3/2 –4f 2F5/2 2 2 0 4d D3/2 –5f F5/2 0 4d 2D3/2 –6f 2F5/2 0 4d 2D3/2 –7f 2F5/2 0 4d 2D3/2 –8f 2F5/2 2 2 0 4d D3/2 –9f F5/2 0 4d 2D3/2 –10f 2F5/2 2 2 0 4d D3/2 –11f F5/2 0 4d 2D5/2 –4f 2F5/2 2 2 0 4d D5/2 –4f F7/2 0 4d 2D5/2 –5f 2F5/2 0 4d 2D5/2 –5f 2F7/2 0 4d 2D5/2 –6f 2F5/2 2 2 0 4d D5/2 –6f F7/2 0 4d 2D5/2 –7f 2F5/2 2 2 0 4d D5/2 –7f F7/2 0 4d 2D5/2 –8f 2F5/2 2 2 0 4d D5/2 –8f F7/2 0 4d 2D5/2 –9f 2F5/2 0 4d 2D5/2 –9f 2F7/2 0 4d 2D5/2 –10f 2F5/2 0 4d 2D5/2 –10f 2F7/2 2 2 0 4d D5/2 –11f F5/2 0 5d 2D3/2 –4f 2F5/2 2 2 0 5d D3/2 –5f F5/2 0 5d 2D3/2 –6f 2F5/2 2 2 0 5d D3/2 –7f F5/2 0 5d 2D3/2 –8f 2F5/2 0 5d 2D3/2 –9f 2F5/2 0 5d 2D3/2 –10f 2F5/2 0 5d 2D3/2 –11f 2F5/2 2 2 0 5d D5/2 –4f F5/2 0 5d 2D5/2 –4f 2F7/2 2 2 0 5d D5/2 –5f F5/2 0 5d 2D5/2 –5f 2F7/2 2 2 0 5d D5/2 –6f F5/2 0 5d 2D5/2 –6f 2F7/2 0 5d 2D5/2 –7f 2F5/2 0 5d 2D5/2 –7f 2F7/2 2 2 0 5d D5/2 –8f F5/2 0 5d 2D5/2 –8f 2F7/2 2 2 0 5d D5/2 –9f F5/2 0 5d 2D5/2 –9f 2F7/2 2 2 0 5d D5/2 –10f F5/2 0 5d 2D5/2 –10f 2F7/2 Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom TABLE VII (cont.) TABLE VII (cont.) Present transition Present oscillator probabilities [108 s−1 ] strengths 0 5d 2D5/2 –11f 2F5/2 6.74×10−5 8.09×10−4 0 6d 2D3/2 –4f 2F5/2 2.76×10−4 1.90×10−3 4.92×10 −4 2.79×10 −2 1.65×10 −7 8.39×10 −2 2.35×10 −3 7.57×10 −1 1.61×10 −3 1.95×10 −1 Transition 2 2 0 6d D3/2 –5f F5/2 2 2 0 6d D3/2 –6f F5/2 0 6d 2D3/2 –7f 2F5/2 2 2 0 6d D3/2 –8f F5/2 0 6d 2D3/2 –9f 2F5/2 0 6d 2D3/2 –10f 2F5/2 0 6d 2D3/2 –11f 2F5/2 2 2 0 6d D5/2 –4f F5/2 0 6d 2D5/2 –4f 2F7/2 2 2 0 6d D5/2 –5f F5/2 0 6d 2D5/2 –5f 2F7/2 2 2 0 6d D5/2 –6f F5/2 0 6d 2D5/2 –6f 2F7/2 0 6d 2D5/2 –7f 2F5/2 0 6d 2D5/2 –7f 2F7/2 0 6d 2D5/2 –8f 2F5/2 2 2 0 6d D5/2 –8f F7/2 0 6d 2D5/2 –9f 2F5/2 2 2 0 6d D5/2 –9f F7/2 0 6d 2D5/2 –10f 2F5/2 2 2 0 6d D5/2 –10f F7/2 0 6d 2D5/2 –11f 2F5/2 0 7d 2D3/2 –4f 2F5/2 0 7d 2D3/2 –5f 2F5/2 0 7d 2D3/2 –6f 2F5/2 2 2 0 7d D3/2 –7f F5/2 0 7d 2D3/2 –8f 2F5/2 2 2 0 7d D3/2 –9f F5/2 0 7d 2D3/2 –10f 2F5/2 2 2 0 7d D3/2 –11f F5/2 0 7d 2D5/2 –4f 2F5/2 0 7d 2D5/2 –4f 2F7/2 0 7d 2D5/2 –5f 2F5/2 2 2 0 7d D5/2 –5f F7/2 0 7d 2D5/2 –6f 2F5/2 2 2 0 7d D5/2 –6f F7/2 0 7d 2D5/2 –7f 2F5/2 2 2 0 7d D5/2 –7f F7/2 0 7d 2D5/2 –8f 2F5/2 0 7d 2D5/2 –8f 2F7/2 0 7d 2D5/2 –9f 2F5/2 0 7d 2D5/2 –9f 2F7/2 2 2 0 7d D5/2 –10f F5/2 0 7d 2D5/2 –10f 2F7/2 2 2 0 7d D5/2 –11f F5/2 0 8d 2D3/2 –4f 2F5/2 2 2 0 8d D3/2 –5f F5/2 0 8d 2D3/2 –6f 2F5/2 0 8d 2D3/2 –7f 2F5/2 0 8d 2D3/2 –8f 2F5/2 0 8d 2D3/2 –9f 2F5/2 1.11×10−3 8.43×10−2 7.98×10−4 4.57×10−2 5.91×10−4 2.81×10−2 1.32×10 −5 1.36×10 −4 2.63×10 −4 2.03×10 −3 2.34×10 −5 1.99×10 −3 4.69×10 −4 2.99×10 −2 1.18×10 −8 4.00×10 −3 1.77×10 −7 7.99×10 −2 1.67×10−4 3.61×10−2 2.51×10−3 7.21×10−1 1.15×10−4 9.29×10−3 1.73×10 −3 1.86×10 −1 7.96×10 −5 4.02×10 −3 1.19×10 −3 8.03×10 −2 5.70×10 −5 2.18×10 −3 8.55×10 −4 4.35×10 −2 4.22×10 −5 1.34×10 −3 1.47×10−4 6.82×10−4 2.42×10−4 5.24×10−3 3.17×10−4 4.96×10−2 1.08×10 −7 1.16×10 −1 9.77×10 −4 7.47×10 −1 7.20×10 −4 1.98×10 −1 5.24×10 −4 8.73×10 −2 3.90×10 −4 4.79×10 −2 6.98×10−6 4.87×10−5 1.40×10−4 7.30×10−4 1.15×10−5 3.74×10−4 2.30×10 −4 5.61×10 −3 1.51×10 −5 3.54×10 −3 3.02×10 −4 5.31×10 −2 7.63×10 −9 5.52×10 −3 1.14×10 −7 1.10×10 −1 6.98×10 −5 3.56×10 −2 1.05×10−3 7.12×10−1 5.14×10−5 9.44×10−3 7.71×10−4 1.89×10−1 3.75×10 −5 4.16×10 −3 5.62×10 −4 8.32×10 −2 2.79×10 −5 2.28×10 −3 8.79×10−5 3.29×10−4 1.38×10−4 1.92×10−3 −4 9.60×10−3 1.99×10−4 7.41×10−2 6.80×10−8 1.47×10−1 4.62×10−4 7.51×10−1 1.70×10 149 Transition Present transition Present oscillator probabilities [108 s−1 ] strengths 0 8d 2D3/2 –10f 2F5/2 3.58×10−4 2.03×10−1 0 8d 2D3/2 –11f 2F5/2 2.70×10−4 8.99×10−2 4.19×10 −6 2.35×10−5 8.37×10 −5 3.53×10−4 6.58×10 −6 1.37×10−4 1.32×10 −4 2.06×10−3 8.10×10−6 6.86×10−4 1.62×10−4 1.03×10−2 9.47×10−6 5.30×10−3 1.89×10 −4 7.95×10−2 4.88×10 −9 7.02×10−3 7.33×10 −8 1.40×10−1 3.30×10 −5 3.58×10−2 4.95×10 −4 7.16×10−1 2.55×10 −5 9.65×10−3 3.83×10−4 1.93×10−1 1.93×10−5 4.28×10−3 5.73×10−5 1.87×10−4 8.75×10 −5 9.43×10−4 1.03×10 −4 3.59×10−3 1.14×10 −4 1.47×10−2 1.27×10 −4 1.01×10−1 4.35×10 −8 1.78×10−1 2.41×10 −4 7.67×10−1 1.92×10−4 2.07×10−1 2.73×10−6 1.34×10−5 5.46×10−5 2.01×10−4 4.17×10 −6 6.73×10−5 8.33×10 −5 1.01×10−3 4.92×10 −6 2.56×10−4 9.83×10 −5 3.85×10−3 5.45×10 −6 1.05×10−3 1.09×10−4 1.58×10−2 6.04×10−6 7.22×10−3 1.21×10−4 1.08×10−1 3.11×10 −9 8.46×10−3 4.66×10 −8 1.69×10−1 1.72×10 −5 3.65×10−2 2.58×10 −4 7.30×10−1 1.37×10 −5 9.84×10−3 3.95×10 −5 1.18×10−4 5.91×10−5 5.41×10−4 6.79×10−5 1.77×10−3 7.25×10−5 5.55×10−3 7.68×10 −5 2.03×10−2 8.26×10 −5 1.29×10−1 2 2 0 8d D5/2 –4f F5/2 2 2 0 8d D5/2 –4f F7/2 0 8d 2D5/2 –5f 2F5/2 2 2 0 8d D5/2 –5f F7/2 0 8d 2D5/2 –6f 2F5/2 0 8d 2D5/2 –6f 2F7/2 0 8d 2D5/2 –7f 2F5/2 2 2 0 8d D5/2 –7f F7/2 0 8d 2D5/2 –8f 2F5/2 2 2 0 8d D5/2 –8f F7/2 0 8d 2D5/2 –9f 2F5/2 2 2 0 8d D5/2 –9f F7/2 0 8d 2D5/2 –10f 2F5/2 0 8d 2D5/2 –10f 2F7/2 0 8d 2D5/2 –11f 2F5/2 0 9d 2D3/2 –4f 2F5/2 0 9d 2D3/2 –5f 2F5/2 2 2 0 9d D3/2 –6f F5/2 0 9d 2D3/2 –7f 2F5/2 2 2 0 9d D3/2 –8f F5/2 0 9d 2D3/2 –9f 2F5/2 2 2 0 9d D3/2 –10f F5/2 0 9d 2D3/2 –11f 2F5/2 0 9d 2D5/2 –4f 2F5/2 0 9d 2D5/2 –4f 2F7/2 2 2 0 9d D5/2 –5f F5/2 0 9d 2D5/2 –5f 2F7/2 2 2 0 9d D5/2 –6f F5/2 0 9d 2D5/2 –6f 2F7/2 2 2 0 9d D5/2 –7f F5/2 0 9d 2D5/2 –7f 2F7/2 0 9d 2D5/2 –8f 2F5/2 0 9d 2D5/2 –8f 2F7/2 2 2 0 9d D5/2 –9f F5/2 0 9d 2D5/2 –9f 2F7/2 2 2 0 9d D5/2 –10f F5/2 0 9d 2D5/2 –10f 2F7/2 2 2 0 9d D5/2 –11f F5/2 0 10d 2D3/2 –4f 2F5/2 0 10d 2D3/2 –5f 2F5/2 0 10d 2D3/2 –6f 2F5/2 0 10d 2D3/2 –7f 2F5/2 2 2 0 10d D3/2 –8f F5/2 0 10d 2D3/2 –9f 2F5/2 C — estimated accuracy ≤ 25% 150 Zhang Tian-yi, Zheng Neng-wu TABLE VIII Transition probabilities and oscillator strengths for multiplets of BI and comparison with accepted values and other results. Transition Present transition NIST transition NIST oscillator Present oscillator probabilities probabilities strength strength 8 −1 8 −1 [10 s ] [48] [10 s ] [48] 3s 2S–3p 2P 0 1.73×10−1 3s 2S–4p 2P 0 4s 2S–3p 2P 0 3.85×10−3 1.47×10−1 4s 2S–4p 2P 0 5s 2S–3p 2P 0 2.66×10−2 5.77×10−2 5s 2S–4p 2P 0 6s 2S–3p 2P 0 6s 2S–4p 2P 0 7s 2S–3p 2P 0 7s 2S–4p 2P 0 8s 2S–3p 2P 0 8s 2S–4p 2P 0 9s 2S–3p 2P 0 9s 2S–4p 2P 0 10s 2S–3p 2P 0 10s 2S–4p 2P 0 3p 2P 0 –3d 2D 3.63×10−2 2.63×10−2 1.30×10−2 1.18×10−2 7.81×10−3 1.06×10−2 6.05×10−3 7.41×10−3 4.05×10−3 5.27×10−3 2.82×10−3 1.36×10−1 3p 2P 0 –4d 2D 3p 2P 0 –5d 2D 3p 2P 0 –6d 2D 3p 2P 0 –7d 2D 3p 2P 0 –8d 2D 3p 2P 0 –9d 2D 3p 2P 0 –10d 2D 4p 2P 0 –3d 2D 4p 2P 0 –4d 2D 4p 2P 0 –5d 2D 4p 2P 0 –6d 2D 4p 2P 0 –7d 2D 4p 2P 0 –8d 2D 4p 2P 0 –9d 2D 4p 2P 0 –10d 2D 3d 2D–4f 2F 0 3d 2D–5f 2F 0 3d 2D–6f 2F 0 3d 2D–7f 2F 0 3d 2D–8f 2F 0 1.04×10−3 3.76×10−4 8.28×10−4 8.30×10−4 7.01×10−4 5.66×10−4 4.48×10−4 1.80×10−2 2.45×10−2 1.43×10−3 1.18×10−4 2.95×10−6 3.30×10−6 1.06×10−5 1.39×10−5 1.35×10−1 4.26×10−2 1.98×10−2 1.10×10−2 6.85×10−3 0.174 1.06 Other transition probabilities Other oscillator strength 1.06 0.1720 [10] 1.126 [56] 1.060 [21] 1.199 [57] 0.18 0.002066 [10] 0.1657 [10] 0.0182 0.02603 [10] 0.05229 [10] 5.49×10−3 0.15 0.0486 1.80×10−1 1.55 0.138 2.17×10−2 3.26×10−1 6.82×10−3 2.94×10−2 2.44×10−3 9.62×10−3 2.03×10−3 6.16×10−3 1.33×10−3 3.61×10−3 9.11×10−4 2.30×10−3 8.96×10−1 2.00×10−3 4.88×10−4 8.92×10−4 8.05×10−4 6.36×10−4 4.92×10−4 3.78×10−4 1.78×10−1 1.26 1.62×10−2 8.06×10−4 1.56×10−5 1.50×10−5 4.38×10−5 5.37×10−5 1.02 1.49×10−1 5.01×10−2 2.35×10−2 0.202 [56] 0.187 [21] 0.188 [57] 0.0198 [56] 0.0187 [21] 0.0182 [57] 0.03745 [10] 0.01817 [10] 0.008948 [10] 0.01895 [10] 0.910 0.1278 [10] 0.0001323 [10] 0.002324 [10] 0.002686 [10] 0.01673 [10] 0.02525 [10] 0.000916 [10] 0.00002152 [10] 0.1209 [10] 0.03706 [10] 0.844 [56] 0.889 [21] 0.786 [57] Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom 151 TABLE VIII (cont.) Transition 3d 2D–9f 2F 0 3d 2D–10f 2F 0 3d 2D–11f 2F 0 4d 2D–4f 2F 0 4d 2D–5f 2F 0 4d 2D–6f 2F 0 4d 2D–7f 2F 0 4d 2D–8f 2F 0 4d 2D–9f 2F 0 4d 2D–10f 2F 0 4d 2D–11f 2F 0 5d 2D–4f 2F 0 5d 2D–5f 2F 0 5d 2D–6f 2F 0 5d 2D–7f 2F 0 5d 2D–8f 2F 0 5d 2D–9f 2F 0 5d 2D–10f 2F 0 5d 2D–11f 2F 0 6d 2D–4f 2F 0 6d 2D–5f 2F 0 6d 2D–6f 2F 0 6d 2D–7f 2F 0 6d 2D–8f 2F 0 6d 2D–9f 2F 0 6d 2D–10f 2F 0 6d 2D–11f 2F 0 7d 2D–4f 2F 0 7d 2D–5f 2F 0 7d 2D–6f 2F 0 7d 2D–7f 2F 0 7d 2D–8f 2F 0 7d 2D–9f 2F 0 7d 2D–10f 2F 0 7d 2D–11f 2F 0 8d 2D–4f 2F 0 8d 2D–5f 2F 0 8d 2D–6f 2F 0 8d 2D–7f 2F 0 8d 2D–8f 2F 0 8d 2D–9f 2F 0 8d 2D–10f 2F 0 8d 2D–11f 2F 0 9d 2D–4f 2F 0 9d 2D–5f 2F 0 9d 2D–6f 2F 0 9d 2D–7f 2F 0 Present transition NIST transition NIST oscillator Present oscillator probabilities probabilities strength strength [108 s−1 ] [48] [108 s−1 ] [48] 4.57×10−3 3.20×10−3 2.36×10−3 1.16×10−7 2.61×10−2 1.32×10−2 7.57×10−3 4.78×10−3 3.22×10−3 2.27×10−3 1.67×10−3 6.36×10−4 2.33×10−7 7.15×10−3 4.40×10−3 2.83×10−3 1.93×10−3 1.37×10−3 1.01×10−3 2.76×10−4 4.92×10−4 1.77×10−7 2.51×10−3 1.73×10−3 1.19×10−3 8.55×10−4 6.33×10−4 1.47×10−4 2.42×10−4 3.17×10−4 1.15×10−7 1.05×10−3 7.71×10−4 5.62×10−4 4.18×10−4 8.79×10−5 1.38×10−4 1.70×10−4 1.99×10−4 7.30×10−8 4.95×10−4 3.83×10−4 2.89×10−4 5.73×10−5 8.75×10−5 1.03×10−4 1.14×10−4 1.32×10−2 8.23×10−3 5.50×10−3 3.91×10−3 1.72×10−2 8.61×10−1 1.85×10−1 7.24×10−2 3.69×10−2 2.17×10−2 1.40×10−2 9.68×10−3 1.13×10−2 5.08×10−2 7.87×10−1 1.92×10−1 8.02×10−2 4.25×10−2 2.57×10−2 1.70×10−2 2.03×10−3 2.99×10−2 8.39×10−2 7.57×10−1 1.95×10−1 8.43×10−2 4.57×10−2 2.81×10−2 7.31×10−4 5.61×10−3 5.31×10−2 1.16×10−1 7.47×10−1 1.98×10−1 8.73×10−2 4.79×10−2 3.53×10−4 2.06×10−3 1.03×10−2 7.94×10−2 1.47×10−1 7.51×10−1 2.03×10−1 8.99×10−2 2.01×10−4 1.01×10−3 3.85×10−3 Other transition probabilities 0.8309×10−8 [10] 0.02470 [10] 0.000627 [10] 2.420×10−8 [10] 0.0002630 [10] 0.0005014 [10] Other oscillator strength 152 Zhang Tian-yi, Zheng Neng-wu TABLE VIII (cont.) Transition 9d 2D–8f 2F 0 9d 2D–9f 2F 0 9d 2D–10f 2F 0 9d 2D–11f 2F 0 10d 2D–4f 2F 0 10d 2D–5f 2F 0 10d 2D–6f 2F 0 10d 2D–7f 2F 0 10d 2D–8f 2F 0 10d 2D–9f 2F 0 10d 2D–10f 2F 0 10d 2D–11f 2F 0 Present transition NIST transition NIST oscillator Other Present oscillator probabilities probabilities strength transition strength [108 s−1 ] [48] [108 s−1 ] [48] probabilities 1.27×10−4 4.66×10−8 2.58×10−4 2.06×10−4 3.95×10−5 5.91×10−5 6.79×10−5 7.25×10−5 7.68×10−5 8.26×10−5 2.59×10−8 1.44×10−4 References [1] G.M. Lawrence, B.D. Savage, Phys. Rev. 141, 67 (1966). [2] T. Andersen, K.A. Jessen, G. Sørensen, Phys. Rev. 188, 76 (1969). [3] D. Goorvitch, F.P.J. Valero, Astrophys. J. 171, 643 (1972). [4] R.A. Roig, G. Tondello, J. Phys. B, Atom. Mol. Phys. 9/14, 2373 (1976). [5] M. Rødbro, R. Bruch, P. Bisgaard, J. Phys. B, Atom. Mol. Phys. 12/15, 2413 (1979). [6] H. Bergström, G.W. Faris, H. Hallstadius, H. Lundberg, A. Persson, C.-G. Wahlström, Z. Phys. D, At. Mol. Clusters 8, 17 (1988). [7] K.K. Irikura, R.D. Johnson III, J.W. Hudgens, J. Opt. Soc. Am. B 10/5, 763 (1992). [8] W.G. Lynam, P.K. Carroll, J.T. Costello, D. Evans, G. O’Sullivan, J. Phys. B, At. Mol. Opt. Phys. 25, 3963 (1992). [9] W.L. Glab, A.M. Falleur, J. Quant. Spectrosc. Radiat. Transfer 73, 121 (2001). [10] H. Lundberg, Z.S. Li, P. Jonsson, Phys. Rev. A 63, 032505 (2001). [11] W. Dankwort, E. Trefftz, Astr. Astrophys. 65, 93 (1978). [12] Mina Vajed-Samii, Dinh Ton-That, L. Armstrong, Jr, Phys. Rev. A 23, 3034 (1980). [13] J. Carlsson, P. Jönsson, L. Sturesson, C. Froese Fischer, Phys. Rev. A 49, 3426 (1994). [14] P. Jönsson, C.F. Fischer, M.R. Godefroid, J. Phys. B, At. Mol. Opt. Phys. 29, 2393 (1996). [15] G. Tachiev, C. Froese Fischer, J. Phys. B, At. Mol. Opt. Phys. 33, 2419 (2000). [16] C. Froese Fischer, G. Tachiev, At. Data. Nucl. Data Tables 87, 1 (2004). Other oscillator strength 1.58×10−2 1.08×10−1 1.78×10−1 7.67×10−1 2.07×10−1 1.26×10−4 5.79×10−4 1.90×10−3 5.95×10−3 2.18×10−2 1.38×10−1 1.96×10−1 [17] C. Laughlin, A. Dalgarno, Phys. Rev. A 8, 39 (1973). [18] J.A. Fernley, A. Hibbert, A.E. Kingston, M.J. Seaton, J. Phys. B, At. Mol. Opt. Phys. 32, 5507 (1999). [19] A.W. Weiss, Phys. Rev. 188/1, 199 (1969). [20] R.K. Nesbet, Phys. Rev. A 14, 1065 (1976). [21] M. Cohen, J. Nahon, J. Phys. B, At. Mol. Opt. Phys. 13, 4325 (1980). [22] L. Liang, Y.C. Wang, J. Phys. B, At. Mol. Opt. Phys. 36, 4387 (2003). [23] U.I. Safronova, J. Plasma Res. Series 7, 282 (2006). [24] N.W. Zheng, T. Wang, Astrophys. J. Suppl. S 143, 231 (2002). [25] N.W. Zheng, T. Zhou, R.Y. Yang, T. Wang, D.X. Ma, Chem. Phys. 258, 37 (2000). [26] D.X. Ma, N.W. Zheng, J. Fan, J. Phys. Chem. Ref. Data 33, 1013 (2004). [27] D.X. Ma, N.W. Zheng, J. Fan, Int. J. Quantum Chem. 105, 120 (2005). [28] N.W. Zheng, T. Wang, R.Y. Yang, J. Chem. Phys. 113, 6169 (2000). [29] N.W. Zheng, D.X. Ma, R.Y. Yang, J. Chem. Phys. 113, 1681 (2002). [30] J. Fan, N.W. Zheng, Chem. Phys. Lett. 400, 273 (2004). [31] Yang Zhihu, Su Youwu, Acta Photon. Sin. 25, 783 (1996). [32] Yan Zhiyu, Chinese J. At. Mol. Phys. 11, 445 (1994). [33] Chen Chang-Yuan, Shen Hong-Lan, Sun Guo-Yao, Acta Phys. Sin. 46, 1055 (1997). [34] Chen Zi-dong, Chen Gang, Chinese J. Chem. Phys. 18, 983 (2005). [35] G. Celik, E. Akin, H.S. Kilic, Eur. Phys. J. D 40, 325 (2006). [36] G. Celik, J. Quant. Spectrosc. Radiat. Transfer 103, 578 (2007). Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom [37] G. Celik, E. Akin, H.S. Kilic, Int. J. Quantum Chem. 107, 495 (2007). [38] N.W. Zheng, Chin. Sci. Bull. 31, 1238 (1986); 32, 1263 (1987); 33, 40 (1988). [39] N.W. Zheng, A New Outline of Atomic Theory, Jiang Su Education Press, Nan Jing 1988. [40] N.W. Zheng, T. Wang, D.X. Ma, T. Zhou, J. Fan, Int. J. Quantum Chem. 98, 281 (2004). [41] D.X. Ma, N.W. Zheng, J. Fan, Int. J. Quantum Chem. 105, 12 (2005). [42] N.W. Zheng, Y.J. Sun, Sci. China (Series B) 43, 113 (2000). [43] W.C. Martin, J. Opt. Soc. Am. 70, 784 (1980). [44] R.M. Langer, Phys. Rev. 35, 649 (1930). [45] F. Rohrlich, Astrophys. J. 129, 441 (1959); F. Rohrlich, Astrophys. J. 129, 449 (1959). [46] G. Racah, Phys. Rev. 62, 438 (1942); G. Racah, Phys. Rev. 63, 367 (1943). [47] W.G. Wang, L.Y. Wang, R.D. Wang, Chin. Sci. Bull. 16, 1231 (1990). 153 [48] J.R. Fuhr, W.C. Martin, A. Musgrove, J. Sugar, W.L. Wiese, NIST Atomic Spectroscopic Database, word wide web url: http://physics.nist.gov . [49] B. Kundu, P.K. Mukherjee, Theor. Chim. Acta 66, 173 (1984). [50] C.E. Theodosiou, Phys. Rev. A 30, 2881 (1984). [51] M.B. Viswanath, K.D. Sen, Theor. Chim. Acta 76, 373 (1989). [52] F.W. King, Phys. Rev. A 44, 3350 (1991). [53] J.P. Desclaux, Comput. Phys. Commun. (1969). 1, 216 [54] A. Lindgard, S.E. Nielsen, J. Phys. B, At. Mol. Phys. 8, 1183 (1975). [55] A. Lindgard, S.E. Nielsen, At. Data Nucl. Data Tables 19, 533 (1977). [56] R.P. McEachran, M. Cohen, J. Quant. Spectrosc. Radiat. Transfer 11, 1819 (1971). [57] W.L. Wiese, M.W. Smith, B.M. Glennon, Atomic Transition Probabilities, Vol. I, US Govt Printing Office, Washington DC 1966.
© Copyright 2026 Paperzz