Influence of the Amazon River on the Nd isotope composition of deep water in the western equatorial Atlantic during the Oligocene-Miocene transition Joseph A. Stewart a,b*, Marcus Gutjahr c, Rachael H. James a, Pallavi Anand d, Paul A. Wilson a a National Oceanography Centre Southampton, University of Southampton, European Way, Southampton, SO14 3ZH, UK. b National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Rd, Charleston, SC, 29412, USA c GEOMAR d School Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3 D-24148 Kiel, Germany of Environment, Earth and Ecosystem Science, Walton Hall, The Open University, Milton Keynes, MK7 6AA, UK *Corresponding author. Tel: +1 843 725 4833, Email: [email protected] Supplementary information: 1.1 Trace element analysis The Ca content of foraminiferal calcite solutions was first determined by inductively coupled plasma optical emission spectroscopy (ICP-OES; Green et al., 2003) to ensure that the trace element standards were matrix matched with the samples. Nd/Ca ratios were then determined by ICP mass spectrometry (ICP-MS; Perkin Elmer Elan DRC II) following techniques described in Rosenthal et al., (1999). The external reproducibility of the Nd/Ca measurements was ±3.4% (2σ) based on repeat analysis (n=23) of two in-house foraminiferal calcite standards. Mn/Ca ratios (reproducibility ±6.9%; 2σ) were also determined by ICP-MS to assess the efficacy of removal of Fe-Mn coatings. Nd/Ca values measured in D. venezuelana range from 1 to 3 μmol/mol, and corresponding Mn/Ca values are between 500 and 1000 μmol/mol (Supplemental Figure 1; data in Supplemental Information Table). There is no correlation between Mn/Ca and Nd/Ca but absolute values are considerably higher (by up to 500 μmol/mol and 1 μmol/mol, respectively) than Mn/Ca and Nd/Ca values measured in recently buried (<1.8 Ma) and living planktonic foraminifera (Supplemental Figure 1; Palmer, 1985; Vance and Burton, 1999; Martínez-Botí et al., 2009). Supplemental Figure 1: Relationship between Mn/Ca and Nd/Ca for cleaned planktonic foraminifera. D. venezuelana (this study) are shown by the shaded blue symbols. Error bars represent the 2σ external reproducibility of the analyses. Also shown are planktonic foraminifera data for the Labrador Sea (open black circles, 0 to 100 meters below seafloor; Vance and Burton, 1999), and core top data from the Mediterranean Sea (open red circles; Martínez-Botí et al., 2009) and equatorial Atlantic Ocean (open blue circles; Palmer, 1985). Black dashed line is the maximum cut-off point for accurate reconstruction of surface water εNd used by Vance and Burton, (1999). Supplemental Information Table: Nd/Ca and Mn/Ca of cleaned planktonic foraminifera D. venezuelana. Core depth shown in metres below sea floor (mbsf). Sample ages are calculated using the age model of Pälike et al. (2006). ODP Sample Identification Site, Hole, Core, Section, Half, Int. Depth (mbsf) Age (Ma) No. Individuals Sample mass (mg) Nd/Ca (?mol/mol) Mn/Ca (?mol/mol) 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 926 B 428.02 430.26 433.05 436.44 438.65 442.96 446.32 450.92 453.32 455.53 458.05 458.88 459.75 461.61 462.11 462.44 462.44 462.71 463.02 463.28 463.56 463.86 464.12 464.40 464.67 464.97 465.22 465.52 465.78 466.09 466.37 466.66 466.92 466.92 467.21 467.46 467.86 468.08 468.31 468.51 468.74 468.97 469.18 469.40 469.63 469.83 470.05 471.21 471.41 471.64 472.09 472.52 472.96 473.62 474.72 476.61 479.29 481.91 485.49 488.12 491.19 21.62 21.69 21.80 21.91 21.98 22.13 22.24 22.39 22.48 22.56 22.65 22.68 22.72 22.80 22.81 22.82 22.82 22.83 22.84 22.86 22.87 22.88 22.89 22.90 22.91 22.93 22.94 22.95 22.96 22.97 22.98 22.99 23.00 23.00 23.01 23.02 23.03 23.04 23.05 23.06 23.07 23.07 23.08 23.09 23.10 23.11 23.12 23.16 23.17 23.18 23.19 23.21 23.22 23.25 23.29 23.36 23.52 23.64 23.78 23.89 24.00 33 31 31 40 31 36 37 33 32 50 59 31 40 41 45 38 28 34 35 32 42 35 35 40 41 37 37 36 35 38 16 36 22 36 39 26 40 37 36 44 33 53 44 34 39 39 33 31 33 38 26 35 36 32 43 40 33 33 20 33 22 1.16 1.26 1.08 1.44 1.09 1.25 1.38 1.34 1.18 1.97 2.42 1.31 1.65 1.57 1.88 1.48 1.04 1.33 1.36 1.12 1.54 1.40 1.26 1.37 1.58 1.35 1.27 1.38 1.27 1.37 0.58 1.39 0.88 1.31 1.34 0.92 1.54 1.48 1.38 1.64 1.15 2.04 1.57 1.30 1.52 1.47 1.25 1.14 1.27 1.46 1.03 1.36 1.34 1.38 1.91 1.57 1.40 1.39 0.79 1.28 1.00 1.56 1.74 1.53 1.38 1.92 1.95 2.30 1.94 1.38 1.26 1.20 1.16 1.50 2.00 1.48 1.81 1.82 2.37 1.68 1.86 2.01 1.98 1.54 2.38 2.71 1.28 1.71 1.95 1.84 1.56 2.23 2.86 1.87 1.77 2.42 2.24 2.63 1.75 2.26 2.12 1.98 2.55 2.64 1.88 1.66 2.40 2.28 2.45 1.47 1.69 2.04 1.83 1.83 1.57 1.55 1.89 1.72 3.10 2.28 1.39 1.66 563 673 735 661 684 682 635 542 682 860 737 821 764 825 807 854 847 783 829 680 648 829 864 759 767 945 962 923 712 794 856 808 857 800 747 874 800 900 891 835 669 826 678 706 685 782 621 694 756 637 671 690 674 796 650 753 737 659 698 729 699 46 46 47 47 47 48 48 48 49 49 49 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 51 51 51 51 51 51 51 51 51 52 52 52 53 4W 5W 1W 3W 5W 1W 3W 6W 2W 3W 5W 5W 6W 1W 1W 1W 1W 1W 2W 2W 2W 2W 2W 3W 3W 3W 3W 3W 3W 4W 4W 4W 4W 4W 4W 5W 5W 5W 5W 5W 5W 6W 6W 6W 6W 6W 6W 1W 1W 1W 1W 2W 2W 2W 3W 4W 6W 1W 4W 6W 1W 71.5 146 65 104 25 86 122 132 12 83 35 117.5 55 21 71 103.5 103.5 131 11.5 38 65.5 96 122 0 27 57 81.5 112 138 18.5 47 76 102 102 131 5.5 46 68 91 111 134 7 28 50 72.5 93 115 21 41 63.5 109 1.5 46 112 72 111 79 141 49 11.5 99 - 73.5 148 67 106 27 88 124 134 14 85 37 119.5 57 24 75 107.5 107.5 134 14 42 69.5 99 124 4 29 59 84 114 141 21.5 49 78 105 105 134 7.5 49 70 95 114 137 9 30 53 74.5 96 119 23 43.5 67.5 111 3.5 49.5 114 74 113.5 81 143.5 51 13.5 101.5 References Green, D.R.H., Cooper, M.J., German, C.R., Wilson, P.A., 2003. Optimization of an inductively coupled plasma-optical emission spectrometry method for the rapid determination of high-precision Mg/Ca and Sr/Ca in foraminiferal calcite. Geochem. Geophys. Geosyst. 4, 8404. Martínez-Botí, M.A., Vance, D., Mortyn, P.G., 2009. Nd/Ca ratios in plankton-towed and core top foraminifera: Confirmation of the water column acquisition of Nd. Geochem. Geophys. Geosyst. 10, Q08018. Pälike, H., Frazier, J., Zachos, J.C., 2006. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quat. Sci. Rev. 25, 3138-3149. Palmer, M.R., 1985. Rare earth elements in foraminifera tests. Earth and Planetary Science Letters 73, 285-298. Rosenthal, Y., Field, M.P., Sherrell, R.M., 1999. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Anal. Chem. 71, 3248-3253. Vance, D., Burton, K., 1999. Neodymium isotopes in planktonic foraminifera: a record of the response of continental weathering and ocean circulation rates to climate change. Earth and Planetary Science Letters 173, 365-379.
© Copyright 2026 Paperzz