Energy-Aware Wireless Scheduling with Near Optimal Backlog and Convergence Time Tradeoffs A(t) Q(t) μ(t) Michael J. Neely University of Southern California INFOCOM 2015, Hong Kong http://www-bcf.usc.edu/~mjneely A Single Wireless Link A(t) Q(t) μ(t) Q(t+1) = max[Q(t) + A(t) – μ(t), 0] A Single Wireless Link A(t) Q(t) μ(t) Q(t+1) = max[Q(t) + A(t) – μ(t), 0] Uncontrolled: A(t) = random arrivals, λ A Single Wireless Link A(t) Q(t) μ(t) Q(t+1) = max[Q(t) + A(t) – μ(t), 0] Uncontrolled: A(t) = random arrivals, λ Controlled: μ(t) = bits served [depends on power use & channel state] Random Channel States ω(t) ω(t) t • • • • • Observe ω(t) on slot t ω(t) in {0, ω1, ω2, … , ωM} ω(t) ~ i.i.d. over slots π(ωk) = Pr[ω(t) = ωk] Probabilities are unknown Opportunistic Power Allocation p(t) = power decision on slot t [based on observation of ω(t)] Assume: • p(t) in {0, 1} (“on” or “off”) • μ(t) = p(t)ω(t) Time average expectations: t-1 p(t) = (1/t) ∑ E[ p(τ) ] τ=0 Stochastic Optimization Problem Minimize : lim p(t) Subject to: lim μ(t) ≥ λ p(t) in {0, 1} for all slots t p* = ergodic optimal average power Define: Fix ε>0. ε-approximation on slot t if: p(t) ≤ p* + ε μ(t) ≥ λ - ε Challenge: Unknown probabilities! Prior algorithms and analysis E[Q] Tε • Neely 03, 06 (DPP) Georgiadis et al. 06 • Neely, Modiano, Li 05, 08: O(1/ε) O(1/ε2) O(1/ε) O(1/ε2) • Neely 07: O(log(1/ε)) O(1/ε2) • Huang et. al. ‘13 (DPP-LIFO): O(log2(1/ε)) O(1/ε2) • Li, Li, Eryilmaz ‘13, ’15: O(1/ε) O(1/ε2) (additional sample path results) Prior algorithms and analysis E[Q] Tε • Neely 03, 06 (DPP) Georgiadis et al. 06 • Neely, Modiano, Li 05, 08: O(1/ε) O(1/ε2) O(1/ε) O(1/ε2) • Neely 07: O(log(1/ε)) O(1/ε2) • Huang et. al. ‘13 (DPP-LIFO): O(log2(1/ε)) O(1/ε2) • Li, Li, Eryilmaz ‘13, ’15: O(1/ε) O(1/ε2) (additional sample path results) • Huang et al. ’14: O(1/ε2/3) O(1/ε1+2/3) Main Results 1. Lower Bound: No algorithm can do better than O(1/ε) convergence time. 2. Upper Bound: Provide tighter analysis to show that Drift-Plus-Penalty (DPP) algorithm achieves: • Convergence Time: Tε = O( log(1/ε) / ε) • Average queue size: E[Q] ≤ O( log(1/ε) ) Part 1: Ω(1/ε) Lower Bound for all Algorithms Example system: • ω(t) in {1, 2, 3} • Pr[ω(t) = 3], Pr[ω(t) = 2], Pr[ω(t) = 1] unknown. Proof methodology: • Case 1: Pr[ transmit | ω(0) = 2 ] > ½. o Assume Pr[ω(t) = 3] = Pr[ω(t) = 2] = ½. o Optimally compensate for mistake on slot 0. • Case 2: Pr[ transmit | ω(0) = 2 ] ≤ ½. o Assume different probabilities. o Optimally compensate for mistake on slot 0. Case 1: Fix λ=1, ε > 0 Power E[p(t)] 1 X 0 0 1 h(μ) curve Rate E[μ(t)] Case 1: Fix λ=1, ε > 0 1 Power E[p(t)] (E[μ(0)], E[p(0)]) is in this region. A X 0 0 1 Rate E[μ(t)] Case 1: Fix λ=1, ε > 0 1 Power E[p(t)] (E[μ(0)], E[p(0)]) is in this region. A X 0 0 1 Rate E[μ(t)] Case 1: Fix λ=1, ε > 0 1 Power E[p(t)] (E[μ(0)], E[p(0)]) is in this region. A X 0 0 1 Rate E[μ(t)] Case 1: Fix λ=1, ε > 0 1 Power E[p(t)] (E[μ(0)], E[p(0)]) is in this region. A X Optimal compensation Requires time Ω(1/ε). 0 0 1 Rate E[μ(t)] Part 2: Upper Bound Power E[p(t)] • Channel states 0 < ω1 < ω2 < … < ωM • General h(μ) curve (piecewise linear) p* h(μ) curve λ Rate E[μ(t)] Part 2: Upper Bound Power E[p(t)] • Channel states 0 < ω1 < ω2 < … < ωM • General h(μ) curve (piecewise linear) Transmit iff ω(t) ≥ ωκ-1 Transmit iff ω(t) ≥ ωκ h(μ) curve λ Rate E[μ(t)] Drift-Plus-Penalty Alg (DPP) • Δ(t) = Q(t+1)2 – Q(t)2 • Observe ω(t), choose p(t) to minimize: Δ(t) + V p(t) Drift Weighted penalty Drift-Plus-Penalty Alg (DPP) • Δ(t) = Q(t+1)2 – Q(t)2 • Observe ω(t), choose p(t) to minimize: Δ(t) + V p(t) Drift Weighted penalty • Algorithm becomes: P(t) = 1 if Q(t)ω(t) ≥ V P(t) = 0 else Q(t) ω(t) Drift Analysis of DPP Positive drift Negative drift Q(t) 0 V/ωk+1 Transmit iff ω(t) ≥ ωκ V/ωk V/ωk-1 Transmit iff ω(t) ≥ ωκ-1 0 < ω1 < ω2 < … < ωM Useful Drift Lemma (with transients) Negative drift: -β Z(t) 0 Lemma: E[erZ(t)] ≤ D + (erZ(0) – D)ρt “steady state” • Apply 1: Z(t) = Q(t) • Apply 2: Z(t) = V/ωk – Q(t) “transient” After transient time O(V) we get: Pr[ Red intervals ] = O(e-cV) Positive drift Negative drift Q(t) 0 V/ωk+1 Choose V = log(1/ε) V/ωk V/ωk-1 Pr[ Red ] = O(ε) After transient time O(V) we get: Pr[ Red intervals ] = O(e-cV) Positive drift Negative drift Q(t) 0 V/ωk+1 V/ωk-1 V/ωk λ Analytical Result p* λ • But queue is stable, so E[μ] = λ + O(ε). • So we timeshare appropriately and: • E[Q(t)] ≤ O( log(1/ε) ) • Tε ≤ O( log(1/ε) / ε ) Simulation: E[p] versus queue size Simulation: E[p] versus time Non-ergodic simulation (adaptive to changes) Conclusions • Fundamental lower bound on convergence time o Unknown probabilities o “Cramer-Rao” like bound for controlled queues • Tighter drift analysis for DPP algorithm: o ε-approximation to optimal power o Queue size O( log(1/ε) ) [optimal] o Convergence time O( log(1/ε)/ε ) [near optimal]
© Copyright 2025 Paperzz