THE PENMAN-MONTEITH METHOD FOR REFERENCE EVAPOTRANSPIRATION AND ASSOCIATED CROP COEFFICIENTS Richard Allen, University of Idaho-Kimberly Ayse Kilic, University of Nebraska-Lincoln March 17, 2015 DSI – Turkish National Commission for Hydrology – Water Balance Workshop for Turkey March 16-20, 2015 Istanbul Topics a. Benefits of using standardized Penman-Monteith reference ET calculation b. QAQC of weather data c. Crop coefficients d. Determination of crop coefficients from METRIC Remote Sensing of ET What is Reference ET? • Reference ET (ETref) is: • ET from a well-defined and consistent surface • dense, uniform and extensive vegetation • well-watered vegetation • ETref represents the majority of weather-based effects on ET • ETref should be based on physics ,a What is Reference ET? • Two Vegetation Types are used for Reference ET: • Clipped Grass (ETo) • Cool season grass (fescue or perennial ryegrass) • Mowed to 8 to 15 cm height • Extensive cover (~ 50 m or more) • Full-cover Alfalfa (ETr) • Dense stand with no cutting effects • 30 to 70 cm height • Extensive cover (~ 50 m or more) Standardized PM Reference ET FAO + American Society of Civil Engineers Universal The single standardized Penman-Monteith equation can be applied to a) grass and alfalfa and b) for daily or hourly timesteps Cn 0.408 (R n G ) u 2 (e s e a ) T 273 ETref (1 Cd u 2 ) (FAO-56 PM ETo ) Calculation Time Step Daily or monthly Hourly during daytime Hourly during nighttime Short Reference, ETo Tall Reference, ETr Cn Cd Cn Cd 900 37 37 0.34 0.24 0.96 1600 66 66 0.38 0.25 1.7 Units for ETo, ETr Units for Rn, G mm d-1 mm h-1 mm h-1 MJ m-2 d-1 MJ m-2 h-1 MJ m-2 h-1 (ASCE PM ETr hourly) Reasons for Standardization of Reference ET (PM) • Common, international and national basis for expression of Evaporative demand • Consistency in calculation of Evapotranspiration • Promotes accurate transfer of Crop Coefficients Benefits of Using FAO-PenmanMonteith Reference ET • Crop coefficients are available for a large number of crops • Crop coefficients are usually transferrable to new areas because of the physical basis of the PM equation • PM equation can be used with only air temperature data, if necessary Kimberly Lysimeters - September 4,1990 ASCE Standardized Penman-Monteith (alfalfa reference) at Kimberly, Idaho Data from Dr. J.L Wright E T , m m /h o u r 1.10 0.90 0.70 0.50 - hourly time step 0.30 0.10 010003000500070009001100130015001700190021002300 Time of Day Etr Lys. 2 alfalfa Kimberly Lysimeters -September 7, 1990 1.10 E T , m m /h o u r -0.10 - Good Accuracy 0.90 0.70 0.50 0.30 0.10 -0.10 3/17/2015 010003000500070009001100130015001700190021002300 CIGR, Bari, Italy, Sept. Time of Day 10, 2013 Etr Lys. 2 alfalfa Good day-to-day correspondance with lysimeter measurements Kimberly, Idaho 1969 Evapotranspiration, mm/day 12 Lysimeter ASCE P-M 10 8 6 4 2 Full c ov er alfalfa - Data from Dr. J .L. Wright 0 100 125 150 175 200 225 250 275 300 Day of Year 3/17/2015 CIGR, Bari, Italy, Sept. 10, 2013 ASCE Manual 70 Comparisons (1990) TABLE L.13 Summary of Statistics and Ranking of Methods for Monthly Estimates of ET at All Locations1 All Months Peak Month Weighted Rank Method %2 SEE3 b4 r5 ASEE6 % SEE b r ASEE SEE7 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 1 Penman-Monteith 101 0.36 1.00 0.99 0.36 97 0.52 1.03 0.99 0.47 0.40 2 1982 Kimberly-Penman 107 0.53 0.95 0.98 0.49 107 0.79 0.96 0.98 0.73 0.59 3 Penman (1963) 106 0.57 0.99 0.97 0.57 99 0.95 1.07 0.96 0.81 0.67 4 Penman (1963), VPD #3 113 0.67 0.93 0.97 0.57 105 0.77 1.00 0.96 0.77 0.68 5 1972 Kimberly Penman 112 0.74 0.93 0.96 0.67 102 0.72 1.03 0.97 0.70 0.72 6 FAO Radiation 114 0.73 0.91 0.97 0.59 110 0.88 0.95 0.96 0.78 0.73 7 FAO-24 Blaney-Criddle 108 0.68 0.95 0.96 0.64 106 0.98 0.98 0.94 0.97 0.76 8 FAO-24 Penman (c = 1) 121 0.91 0.88 0.96 0.65 111 0.84 0.95 0.96 0.76 0.82 9 Jensen-Haise 85 0.84 1.11 0.95 0.71 83 1.44 1.15 0.92 1.06 0.95 10 Hargreaves et al. (1985) 108 0.88 1.00 0.93 0.88 101 1.47 1.07 0.87 1.39 1.05 11 FAO-24 Corrected Penman 127 1.16 0.82 0.96 0.65 122 1.53 0.86 0.93 1.00 1.10 12 FAO-24 Pan 100 0.92 0.94 0.92 0.88 95 1.58 1.03 0.82 1.57 1.11 13 SCS Blaney-Criddle 101 1.16 0.99 0.87 1.15 103 1.31 1.05 0.89 1.26 1.20 13 Pan Evaporation 118 1.34 0.82 0.92 0.87 113 1.82 0.88 0.83 1.56 1.35 14 Turc 90 1.30 1.20 0.89 1.07 85 2.26 1.31 0.84 1.49 1.46 15 Priestley-Taylor 85 1.29 1.22 0.90 1.02 86 2.34 1.28 0.78 1.72 1.48 1 All equations were adjusted for the reference crop of the lysimeter (excluding FAO-PPP-17, Businger-van Bavel, Thornthwaite, and Christiansen pan methods in former table 7.20). 2 Average percentage of lysimeter measurements. 3 Standard error of the estimate or ET estimates in mm d-1 that have not been adjusted by regression. 4 Regression coefficient (slope) for regression through the origin of lysimeter versus equation estimate. 5 Correlation coefficient for regression through the origin of lysimeter versus equation estimate. 6 Standard error of estimate for ET estimates in mm d-1 that have been adjusted by regression through the origin. 7 Weighted standard error of estimated calculated as 0.7(Col. 4) + 0.33(Col. 7) + 0.3[0.67(Col. 9) + 0.33(Col. 12)]. Overall Ranking ASCE Manual 70 Conclusion • Methods Using Primarily Air Temperature • • Of the temperature methods, the SCS Blaney-Criddle method and Thornthwaite method (not included in the tables), were generally the poorest in estimating lysimeter ET of all methods evaluated. The SCS Blaney-Criddle typically underestimated reference ET in the arid climates and overestimated both peak and seasonal ET in humid climates. • . The Hargreaves-Samani method tended to underestimate ET by about 10 percent in arid climates. The FAO Blaney-Criddle method provided good estimates of both peak and seasonal ET at the arid lysimeter locations. ASCE PM -- Daily vs. Hourly Timestep 20 Davis, California CIMIS Station 2008 – 2012 18 y = 1,005x + 0,182 R² = 0,957 24-h Timestep Ref. ET, mm d-1 16 14 Grass Reference 12 10 8 Conclusion: You can use hourly or daily weather data 6 4 2 0 0 2 4 6 8 10 12 14 16 Summed Hourly Reference ET, mm d-1 18 20 ASCE PM -- Daily vs. Hourly Timestep 20 y = 1,025x + 0,434 R² = 0,944 18 Davis, California CIMIS Station 2008 – 2012 24-h Timestep Ref. ET, mm d-1 16 14 Alfalfa Reference 12 10 8 Conclusion: You can use hourly or daily weather data 6 4 2 0 0 2 4 6 8 10 12 14 16 Summed Hourly Reference ET, mm d-1 18 20 Example crop coefficients for the Grass Reference ETo Source: FAO-56 and American Society of Agricultural Engineers – Design and Operation of Irrigation Systems, 2008. 3/17/2015 3/17/2015 FAO-Style Crop Coefficient = ET/ETref K c m i d • simple, relatively accurate K c e n d 1 . 2 1 . 0 0 . 8 K c K 0 . 6 c i n i 0 . 4 0 . 2 0 . 0 T i m e o f S e a s o n , d a y s 3/17/2015 Kc from Lysimeter each dot is one day Sweet Corn-- Kimberly, Idaho, 1976 Kc Precipitation and Irrigation, mm “Single” Curve averages Evaporation from wet soil 200 1.2 160 1.0 0.8 120 0.6 80 I 0.4 I I I I I 0.2 P 0.0 I I 130 P P 150 40 I 170 190 210 Day of the Year 230 250 0 data courtesy of Dr. J.L. Wright, USDA-ARS 3/17/2015 The “Dual Kc” method Splits Soil Evaporation from Transpiration Sweet Corn Kimberly, Idaho, 1976 Basal Kc Curve1.0 (Kcb) 160 K 0.8 c Wet Soil Evaporation “Spikes” (Ke) 120 0.6 Evap.=18% I 0.4 I I I I I P 0.0 I I 0.2 130 40 I P P 150 80 170 190 210 Day of the Year 230 250 0 Precipitation and Irrigation, mm “Mean” Kc Curve 1.2 200 data courtesy of Dr. J.L. Wright, USDA-ARS 3/17/2015 „Dual‟ Kc Procedure ET K = K K + K = c s cb e ETref K s = water stress (0 - 1) Kcb= basal K c (dry surface) Ke = evaporation coefficient 3/17/2015 The “Dual Kc” method Splits Soil Evaporation from Transpiration Sweet Corn Kimberly, Idaho, 1976 Basal Kc Curve1.0 (Kcb) 160 K 0.8 c Wet Soil Evaporation “Spikes” (Ke) 120 0.6 Evap.=18% I 0.4 I I I I I P 0.0 I I 0.2 130 40 I P P 150 80 170 190 210 Day of the Year 230 250 0 Precipitation and Irrigation, mm “Mean” Kc Curve 1.2 200 data courtesy of Dr. J.L. Wright, USDA-ARS 3/17/2015 Evaporation Coefficient - Ke FAO-56 Simple Drying Function Es = K e ETref Skin Evaporation (Allen, 2011) TEW = Total Evaporable Water (Soil) TEW ~ 10 to 35 mm De ~ 150 mm 3/17/2015 Kc from Lysimeter Precipitation and Irrigation, mm Using FAO style straight line method each dot is one day 200 1.2 Kc 0.0 130 150 170 190 210 Day of the Year 230 250 data courtesy of Dr. J.L. Wright, USDA-ARS Colorado Evapotranspiration Workshop March 12, 2010 3/17/2015 Estimating Humidity, Solar Radiation, Wind Speed when only Air temperature is The Penman-Monteith equation “requires”: Available When Unavailable: • Tdew = Tmin – Ko • • • • Air temperature Humidity (dewpoint temperature (Tdew)) Solar Radiation Wind Speed • – Ko is a fixed „offset‟ that can vary from month to month. • • Solar Radation = f(Tmax – Tmin) -- (Thornton-Running) • Wind Speed = Long-term monthly averages Based on Guidelines in FAO-56 (Allen et al., 1998) (For more information: Google for “ETIdaho” www.kimberly.uidaho.edu/ETIdaho/ ) (there is no reason not to apply the Penman-Monteith method) QAQC OF WEATHER DATA “Visual Analyses based on Theoretical Relationships” QAQC = quality assessment and quality control (correction) Software: REF-ET -- free at: http://extension.uidaho.edu/kimberly/2013/04/ref-et-referenceevapotranspiration-calculator/ (just Google “REF-ET”) Clear Sky Curve 24-hour Solar Radiation Measured Corrected by multiplying by 1.14 for day 90 to day 250 for year 1992 x 1.16 for day 90 to day 240 for year 1993 Corrected Visual Scanning of Hourly RH Data Example of QAQC process of Max. Daily RH% at UC Davis CIMIS station Base adjustments on ratios between theoretical clear sky solar radiation and top percentiles of measured data Before Correction – Sensor Drift Max Daily RH% • After Correction – No Sensor Drift Max Daily RH% Slide courtesy of Justin Huntington, DRI BIASES IN “SOME” GRIDDED WEATHER DATA SETS Gridded Weather Data Sets • In the future we will calculate Reference ET from Gridded Weather data sets: • NLDAS (North American Land Data Assimilation System) ~ 16 km • GLDAS (Global Land Data Assimilation System) ~ 32 - 64 km • These data sets are derived primarily from: • radiosonde air profiles • weather data from (dry) airports • Therefore, data can be „too hot‟ and „too dry‟ compared to Agriculture • These gridded data can be „adjusted‟ using • bias correction using agricultural point data (such as TARGEM) • conditioning algorithms based on profile theory The Need for “bias correction” or “conditioning”: NARR Tair vs. Irrigated vapor pressure - Idaho 3.0 Actual Vapor Pressure (ea) . ea, Agrimet - Twin Falls ea, NARR-Twin Falls 2.0 1.0 0.0 7/13/2008 7/18/2008 7/23/2008 7/28/2008 8/2/2008 Date Three-hourly vapor pressure data from NARR over Kimberly, ID, during May 2008, compared with measurement at USBR Agrimet weather station (TWFI) near Kimberly. The Agrimet station is over irrigated grass and has double the humidity than the NARR data that is impacted by ambient data from nonirrigated weather sources. Impact of Site Aridity on ETo and „correction‟ using “Conditioning functions” for air temperature, humidity and wind speed Conclusion: Using extremely arid weather data reduces vapor pressure, increases air temperature and increases wind speed measurements. In this example, that caused a 32% overstatement of reference ET. Conditioning the data reduced the overstatement of ET to 6%. DETERMINATION OF CROP COEFFICIENTS FROM SATELLITEBASED ET MAPPING (METRIC) Growing Season ET at 30 m resolution for the Eastern Snake Plain of Idaho, USA April – October, 2006 ET Idaho Falls Ketchum ~160 km American Falls Oakley April 5-7, 2011 NASA/USDA Workshop on Evapotanspiration ET features at 30 m resolution April – October, 2006 ET from METRIC-Landsat 25 km April 5-7, 2011 NASA/USDA Workshop on Evapotanspiration 3/17/2015 1.21.2 1.01.0 Kc 0.80.8 Sampling Kc from Satellite-ET Potato 717 fields in the Twin Falls area Average “curve” 0.60.6 0.40.4 0.20.2 0.00.060 60 100 100 140 140 180 180 Day of Year 220 220 260 260 Landsat Overpass Dates 300 300 3/17/2015 Development of “Local” Crop coefficients Samples from 717 POTATO fields in southern Idaho, 2000 Average curve Early plant/harvest Late plant/harvest Kc curve for Late planting? METRIC Kc curves reflect local practices and field management Kc curve for Early planting? 3/17/2015 Sampling Kc (Kc = ETrF) from Satellite-ET images Each „blue dot‟ is one field. alfalfa kc Sampling of METRIC estimates for ET from alfalfa for >300 fields in southcentral Idaho on Landsat overpass days.1.21.2 325 fields Alfalfa 1.01.0 Kc 0.80.8 0.60.6 0.40.4 0.20.2 0.00.060 60 100 100 140 140 180 180 Day of Year 220 220 260 260 300 300 Comparing METRIC vs. traditional Kc ETref methods alfalfa reference ETr basis (Kc = ETact / ETref) Sugar Beets Twin Falls, Idaho 2000 1.2 Mean Kc 1.0 0.8 FAO-56 dual Kc method 0.6 0.4 0.2 0.0 Kc from Landsat Image Kc traceable to lysimeter 1/1/2000 3/2/2000 5/2/2000 7/2/2000 9/1/2000 11/1/2000 1/1/2001 Month (relatively good agreement among very independent approaches, including during the „shoulder‟ periods when ground has partial cover) Agrimet for 2000 Kcmean ETref Allen-Robison - 14 yr ave. (Kcb + Ke) ETref METRIC for 2000 Energy Balance 3/17/2015 Comparing METRIC vs. traditional Kc ETref methods Dry Beans Twin Falls, ID 2000 1.2 Mean Kc 1.0 0.8 0.6 0.4 0.2 0.0 1/1/2000 3/2/2000 5/2/2000 7/2/2000 9/1/2000 11/1/200 1/1/2001 0 Month Agrimet for 2000 Agrimet for 2000 Allen-Robison - 14 yr ave. Allen-Robison - 14 yr ave. METRIC for 2000 METRIC for 2000 Comparing METRIC vs. traditional Kc ETref methods Field Corn Twin Falls, Idaho 2000 1.2 Mean Kc 1.0 0.8 0.6 0.4 0.2 0.0 1/1/2000 3/2/2000 5/2/2000 7/2/2000 9/1/2000 11/1/2000 1/1/2001 Month (relatively good agreement among very independent approaches, with some variation during the „shoulder‟ periods when ground has partial cover) Agrimet for 2000 Allen-Robison - 14 yr ave. METRIC for 2000 Comparing METRIC vs. traditional Kc ETref methods Mean Kc Potatoes Twin Falls, Idaho 2000 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1/1/2000 3/2/2000 5/2/2000 7/2/2000 9/1/2000 11/1/2000 1/1/2001 Month (relatively good agreement among very independent approaches, including during the „shoulder‟ periods when ground has partial cover) Agrimet for 2000 Allen-Robison - 14 yr ave. METRIC for 2000 There are Multiple entries for Kc for Fruit Trees in FAO-56 Kc tables –– These can be calculated from fc (Allen and Pereira, 2009, Irrigation Science) Crop Kc ini Kc mid Kc end Kcb ini Kcb mid Kcb end Fruit Trees Almonds - no ground cover - high density (fceff = 0.7) 0.40 1.00 0.70 0.20 0.95 0.65 - no ground cover - med. density (fceff = 0.5) 0.40 0.85 0.60 0.20 0.80 0.55 - no ground cover – low dens. / young (fceff = 0.25) 0.35 0.50 0.40 0.15 0.45 0.35 - active ground cover33 - high density (fceff = 0.7) 0.85 1.05 0.85 0.75 1.00 0.80 - active ground cover - med. density (fceff = 0.5) 0.85 1.00 0.85 0.75 0.95 0.80 - act. grnd cover – low dens. / young (fceff = 0.25) 0.85 0.95 0.85 0.75 0.90 0.80 - no ground cover - high density (fceff = 0.7) 0.50 1.15 0.80 0.30 1.10 0.75 - no ground cover - med. density (fceff = 0.5) 0.50 1.05 0.75 0.30 1.004 0.70 - no ground cover - low dens./ young (fceff = 0.25) 0.40 0.70 0.55 0.25 0.65 0.50 - act. grnd cov., killing frost – h.dens. (fceff = 0.7) 0.50 1.20 0.85 0.40 1.15 0.80 - act. grnd cov., killing frost – m.dens. (fceff=0.5) 0.50 1.15 0.85 0.40 1.10 0.80 - act. grnd cov., killing frost – l.dens. (fceff = 0.25) 0.50 1.05 0.85 0.40 1.00 0.80 - act. grnd cov., no frosts – h. dens. (fceff = 0.7) 0.85 1.20 0.85 0.75 1.15 0.80 - act. grnd cov., no frosts – m. dens. (fceff = 0.5)3 0.85 1.15 0.85 0.75 1.10 0.80 - act. grnd cov., no frosts – l. dens. (fceff = 0.25) 0.85 1.05 0.85 0.75 1.00 0.80 Apples, Cherries, Pears 3/17/2015 Measurements by Grattan et al. 1998 (and Hanson and May, 1.2 1 Basal Crop Coefficient Basal Crop Coefficient 1.2 2006) Cantaloupe 1 Onion 0.8 0.8 0.6 0.6 0.4 0.4 0.2 UCD (Grattan et al.) 0.2 Kd based func. Kd based func. 0 0 0 20 40 60 80 Percent Ground Cover 0 100 1.2 1 1 Basal Crop Coefficient 1.2 Basal Crop Coefficient UCD (Grattan et al.) Strawberry 20 40 60 80 100 Percent Ground Cover 120 Tomato 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 UCD (Grattan et al.) Hanson and May 2006 Kd based func. Kd based func. 0 0 0 20 40 60 80 Percent Ground Cover 100 0 0.2 0.4 0.6 0.8 1 Fraction Ground Cover 1.2 3/17/2015 Colorado Evapotranspiration Workshop March 12, 2010 COMPARISON OF ETC FROM KC ETO WITH ETC FROM WATER BALANCE 3/17/2015 Colorado Evapotranspiration Workshop March 12, 2010 Example: Imperial Valley, California, USA ~200,000 ha USA Mexico Allen et al., 2005, ASCE J. IDE 3/17/2015 Water Balance of Imperial Irrigation District ET = Inflow - Surface Outflow + Precipitation - Δ Soil Water - Deep Percolation More than 40 types of crops modeled Acreage of each crop changed each year • accuracy of annual ET from the water balance is +/- 5% (95% C.I.) 3/17/2015 FAO-56 PM grass reference ETo and Dual Kc method were used Total Proj ect Ev apotranspiration 1990 Acre-Feet per month 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Total Proj ect Ev apotranspiration 1991 Acre-Feet per month 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Total Proj ect Ev apotranspiration 1992 Acre-Feet per month 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Total Proj ect Ev apotranspiration 1993 Acre-Feet per month 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Total Proj ect Ev apotranspiration 1994 Acre-Feet per month 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Total Proj ect Ev apotranspiration 1995 Acre-Feet per month 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Total Proj ect Ev apotranspiration 1996 Acre-Feet per month 350,000 1990-96 Rat io = 1. 07 SEE f or monthly = +/ - 16% 300,000 250,000 200,000 150,000 100,000 50,000 0 (AF Values are s c aled) J an.F ebMar.A pr.MayJ une J ulyAug S eptOc . tN . ovD. ec . KcETo (Pot.) ETcWB ETo 3/17/2015 Conclusions • The Kc ETr method using Penman-Monteith method is relatively accurate and transferable • The Kc incorporates important factors affecting ET • The dual Kc provides good estimation of impacts of evaporation from soil • Satellite-based ET (from METRIC) can be used to produce Kc curves for: • new crops • new areas • new planting periods • water-stressed areas THANK YOU
© Copyright 2026 Paperzz