BA 240 Yamasaki Solutions to Practice 5 Temperature of Decrease in Pulse rate(Y) Water (X) in beats per minute 68 65 70 62 60 55 58 2 5 1 10 9 13 10 438 50 X2 4624 4225 4900 3844 3600 3025 3364 27582 XY 136 325 70 620 540 715 580 2986 Sxy Sxx = 2986 -(438*50)/7 = 27582 -(438*438)/7 = = -142.5714 175.7143 Syy = 480 -(50*50)/7 = 122.8571 S2y/x = 122.8571-((-142.571)2/175.7143) 7-2 Sy/x √1.43557 = 1.1982 Sy/x/√Sxx = 1.1982/√175.7143 = 0.090388 = DCSI Solutions to Practice 5 ( 14 pages) Y2 4 25 1 100 81 169 100 480 1.4356 2 b1 xy x2 x y n x 2 n 438 50 2986 7 4382 27582 7 2986 3128.57 27582 27406.29 142.57 175.71 .8114 b0 n y b1 x n 50 438 ( .8114) 7 7 7.14 50.77 57.913 i 57.913.811xi y DCSI Solutions to Practice 5 ( 14 pages) 3 Scatterdiagram of Water Temp vs Decrease in Pulse Rate Decrease in Pulse Rate 14 12 10 8 6 4 2 R² = 0.9416 0 30 40 50 60 70 80 Wate r Te mp (F) c. ŷ i 57.913 .811x i at x 60 ŷ = 57.913 - .811(60) = 57.913 - 48.66 = 9.25 DCSI Solutions to Practice 5 ( 14 pages) 4 d. H 0 : 1 1.00 H A : 1 1.00 df = 7 - 2 = 5 t13.05 2.015 t = - .8114 - (-1) 1.1982 175.7143 .1886 2.086 .0904 Since 2.086 - 2.015 cannot reject H 0 . Data is insufficie nt to indicate the population slope is - 1 e. Coefficient of determination S 2 r 2 xy S xx S yy ( 142.5714) 2 .9416 175.7143 122.8571 DCSI Solutions to Practice 5 ( 14 pages) 5 f. Partition Sum of Squares SST = Sy2 – (Sy)2/n = Syy SSE = Sy2 – b0Sy – b1Sxy Regression (ANOVA table) Source SS Regression SSR Error SSE Total SST df 1 N-2 N-1 MS F MSR MSR/MSE MSE SSE = 480 - ( 57.913)*(50) –(-.8114)*(2986) = 7.1904 SST = Syy = 122.8571 Regression (ANOVA table) Source SS Regression 115.6631 Error 7.1904 Total 122.8571 df 1 5 6 DCSI Solutions to Practice 5 ( 14 pages) MS 115.6631 1.4381 F 80.43 6 SUMMARY OUTPUT Regression Statistics Multiple R 0.97035 R Square 0.94158 Adjusted R Square 0.92990 Standard Error 1.19810 Observations 7.00000 ANOVA df Regression Residual Total Intercept Temp of Water (X) 1 5 6 SS 115.67991 7.17724 122.85714 MS 115.67991 1.43545 F 80.58806 Significance F 0.000286124 Coefficients 57.91220 -0.81138 Standard Error 5.67354 0.09038 t Stat 10.20742 -8.97709 P-value 0.00015 0.00029 Lower 95% 43.32790282 -1.043720786 RESIDUAL OUTPUT Upper 95% 72.49648742 -0.579043442 PROBABILITY OUTPUT Predicted Observation Decrease in Pulse rate(Y) in beats Residuals per minute Standard Residuals 1 2.73821 -0.73821 -0.67496 2 5.17236 -0.17236 -0.15759 3 1.11545 -0.11545 -0.10556 4 7.60650 2.39350 2.18842 5 9.22927 -0.22927 -0.20962 6 13.28618 -0.28618 -0.26166 7 10.85203 -0.85203 -0.77903 DCSI Solutions to Practice 5 ( 14 pages) Percentile Decrease in Pulse rate(Y) in beats per minute 7.142857143 1 21.42857143 2 35.71428571 5 50 9 64.28571429 10 78.57142857 10 92.85714286 13 7 Residuals Temperature of Water (X) Residual Plot 4.00000 2.00000 0.00000 0 -2.00000 20 40 60 80 Temperature of Water (X) Decrease in Pulse rate(Y) in beats per minute Temperature of Water (X) Line Fit Plot Decrea s e i n Pul s e ra te(Y) i n bea ts per mi nute 20 10 0 0 50 100 Predi cted Decrea s e i n Pul s e ra te(Y) i n Temperature of Water (X) bea ts per mi nute Normal Probability Plot 15 Decrease in Pulse rate(Y) in beats per minute 10 5 0 0 20 40 60 80 100 Sample Percentile DCSI Solutions to Practice 5 ( 14 pages) 8 Simple Linear Regression Model: yi dependent var iable 0 Intercept 1 xi Slope independent var iable Assume :1) i N ( 0, 2 i random error ) 2) i ' s are independent To estimate regression line, use least squares method. DCSI Solutions to Practice 5 ( 14 pages) 9 b1 S xy S xx where S xy S xx xi x yi y xi yi xi xi x xi2 yi n 2 xi 2 n b0 y b1 x Estimate of 2 S y2/ x where S yy yi S yy y yi2 S xy S xx 2 n 2 2 yi 2 n DCSI Solutions to Practice 5 ( 14 pages) 10 Example: A real estate agent would like to predict selling price of a single family home based on size of house. She takes a random sample of 15 recently sold homes. House size(100sq ft) 20 14.8 20.5 12.5 18.0 14.3 27.5 16.5 24.3 20.2 22.0 19.0 12.3 14.0 16.7 Selling Price($1000) 89.5 79.9 83.1 56.9 66.6 82.5 126.3 79.3 119.9 87.9 112.6 120.8 78.5 74.3 74.8 DCSI Solutions to Practice 5 ( 14 pages) 11 Preliminary calculations: Sx = 272.6 Sx2 = 5222.24 Sy = 1332.6 Sy2 = 124618.42 b1 S xy S xx 25257.97 Sxy = 25257.97 272.6 1332.6 15 2 272.6 5222.24 15 1040.18 3.88 268.19 1332.6 272.6 b0 y b1 x 3.88 15 15 18.34 Our least squares estimate of the regression line is ŷ = 18.34 + 3.88x So if x = 13.5 (i.e. house is 1350 sq ft) our predicted price would be 18.34 + 3.88(13.5) = 70.72 (i.e. $70,720). S yy y y 2 2 i i n 2 1332.6 124618.42 15 6230.24 S 2 y/x 2 S xy S yy S xx n2 1040.18 2 6230.24 268.19 13 2195.88 13 168.91 DCSI Solutions to Practice 5 ( 14 pages) 12 Tests of hypotheses about 1 H0 : 1 H A : 1 ( , ) t b1 Sy/ x S xx Suppose that historically houses in the area were selling at $3,000 per 100sq feet. Due to the recent demand the real estate agent believed that houses were now selling for more. Is there sufficicient evidence to substantiate her belief? ( =.05) H0 : 1 3 H A : 1 3 df = n - 2 = 13 t13.05 1.771 t = 3.88 - 3 13.00 268.19 .88 111 . .794 Since 1.11 < 1.771 cannot reject H 0 . Data is insufficient to substantiate her belief DCSI Solutions to Practice 5 ( 14 pages) 13 Coefficient of determination r 2 S xy 2 S xx S yy 1040.182 268.19 6230.24 .6475 So 64.75% of the variation in house prices due to differences in size. 0 r2 1 Correlation Coefficient ( ) S xy Estimate r = S xx Syy 1040.18 268.19 6230.24 .8047 H0 : 0 H A: (, )0 = .05 t r n 2 1 r2 So reject H 0 . .8047 15 2 1 .8047 2 4.89 t13.025 2.16 Conclude that there is a significant linear association between size and p rice. Note that this test formula works to H 0 : 0. DCSI Solutions to Practice 5 ( 14 pages) 14
© Copyright 2026 Paperzz