Ole Steuernagel and Maria Schilstra UH University of Hertfordshire Hatfield 1 1 UH 1 UH Heavy Traffic UH Heavy traffic – solutions? UH Traffic flow modelled by point particles 10 units Vmax 5 units Vmax No other distinguishing features: same size, same acceleration, same behaviour… UH Cellular Automaton – Evolution Rules p UH Heavy Traffic – Modelling with Cellular automata A la Nagel and Schreckenberg http://www.traffic.uni-duisburg.de/model/index.html Heavy Traffic – Modelling with Cellular automata A la Nagel and Schreckenberg Traffic – Modelling J H (max p) = (remaining free road) (drive-off probability) Acceleration Matrix P0 P1 P2 P3 P 4 P0 P1 A P2 P3 P 4 A 1 1 0 0 0 P0 P0 (t 1) 0 P1 P1 (t 1) 1 P (t 1) (1 A) P 0 2 2 P3 (t 1) P3 0 P (t 1) P 0 4 4 0 P0 1 0 0 0 P1 1 1 0 0 P2 0 1 1 0 P3 P 0 0 1 0 4 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 P0 (t ) 0 P1 (t ) 0 P2 (t ) 0 P3 (t ) P (t ) 1 4 UH Randomization Matrix P0 P1 P2 P3 P 4 R P0 P0 0 p 0 0 0 P1 P1 0 p p 0 0 R P2 0 0 p p 0 P2 P3 P3 0 0 0 p p P P 0 0 0 0 p 4 4 P0 (t 1) P1 (t 1) P (t 1) (1 R) 2 P3 (t 1) P (t 1) 4 0 0 0 P0 (t ) P0 1 p 0 0 P1 (t ) P1 0 1 p p P2 0 0 1 p p 0 P2 (t ) 0 1 p p P3 (t ) P3 0 0 P (t ) P 0 0 0 0 1 p 4 4 UH Slow-down Matrix S P0 P0 P0 0 d d P1 P1 P1 0 d 1 d P2 S P2 0 0 d 2 1 d 2 d 2 P2 3 3 P P 0 0 d 1 d P3 3 3 0 P P P 4 0 0 0 d 1 4 4 4 0 P0 (t 1) P0 (t ) P1 (t 1) P1 (t ) P (t 1) (1 S ) P (t ) 2 2 P3 (t 1) P3 (t ) P (t 1) P (t ) 4 4 where d 1 UH Joint Transformation Matrix T P0 (t ) P0 (t ) P0 (t 1) P1 (t ) P1 (t ) P1 (t 1) P (t 1) (1 R ) (1 S) (1 A ) P (t ) T P (t ) 2 2 2 P3 (t ) P3 (t ) P3 (t 1) P (t ) P (t ) P (t 1) 4 4 4 P0 P0 P1 P1 T contractive P0 (0) P0 Steady state : P2 T P2 P1 (0) P1 P3 P3 N P ( 0) P T lim 2 2 P P N 4 SS 4 SS P3 (0) P ( 0) 4 P3 P 4 SS UH Steady state of Joint Transformation T (1 R ) (1 S) (1 A) J simulation master equation U H Steady state of Joint Transformation T (1 R ) (1 S) (1 A) simulation master equation UH Slow-down due to other vehicles Follower Leader UH Slow-down due to other vehicles Follower Leader UH Slow Down Matrix S(P) 0 0 0 00 0 0 P0 0 0 0 0 S n ,1 1 (1 S g , 2 ) 1 (1 S g ,3 ) 1 (1 S g , 4 ) g 0 d 0 n0d 1 g 0 1 d g 10 d P1 1 0 0 S n2, 2 2 (1 S g ,32) 2 (1 S2g , 4 ) 0 nd0 1 g 0 2 d g 0 d 0 P2 2 3S 3 ) 0 0 0 ( 1 S n , 3 3 0 0 0 dn0 1 g0 d g ,4 P3 3 4 0 0 00 Sn , 41 P4 00 0 0 d n 0 Leader Follower UH Slow Down Matrix * 0 0 0 0 0 g * * S(P) * P3 * 0 * 0 * * 1 (1 S g , 3 ) g 0 1 0 * 2 (1 S g , 3 ) g 0 2 0 g 0 0P0 l S n,3 n 0 0 * * * * * l 0 UH Slow Down Matrix P 0 P1 P2 S(P) nonlinear in P S(P) P3 P4 0 0 0 0 0 0 0 0 0 0 S n ,1 1 (1 S g , 2 ) 1 (1 S g , 3 ) 1 (1 S g , 4 ) n 0 g 0 g 0 g 0 1 1 1 0 0 Sn,2 2 (1 S g ,3 ) 2 (1 S g , 4 ) n 0 g 0 g 0 2 2 0 0 S n,3 3 (1 S g , 4 ) 0 n 0 g 0 3 0 0 0 Sn,4 0 n 0 UH Steady state of Joint Transformation T (1 R ) (1 S) (1 A) J simulation modified master equation master equation Steady state of Joint Transformation T (1 R ) (1 S) (1 A) simulation modified master equation master equation UH Fundamental Diagrams J p=0.1 p=0.5 p=0.9 UH OUTLOOK: • Insert real world numbers • Study effects of length acceleration lane bias noise structure formation • Related fields? network traffic UH OUTLOOK ON NOISE Maria Schilstra’S recent simulations… UH UH
© Copyright 2026 Paperzz