Transaction costs, liquidity and expected returns at the Berlin Stock Exchange, 1892-1913 Carsten Burhop, Universität zu Köln Sergey Gelman, ICEF, Higher School of Economics, Moscow 1st ILFE Workshop, Moscow, September 18, 2010 Motivation Explore effective transaction cost determinants & effects in a ‘friendly environment’: on an early call auction stock market over a long time span 2 Outline 1. 2. 3. 4. 5. Literature review Historical background Data & Methodology Results Conclusion 3 1. Literature Review I: liquidity & asset pricing • Amihud (2002, JFM) – Positive risk premium for expected illiquidity – Inverse relation of returns and unexpected illiquidity shocks • Eleswarapu/Reinganum (1993), Brennan and Subrahmanyam (1996) – Negative/insignificant risk premia • Bekaert et al. (2007, RFS) – Dynamic interdependence of liquidity and returns on the market level (whereby liquidity only weakly dependent); – Transaction cost adjustment + liquidity risk premium • Goyenko et al. (2009, JFE) – Effective transaction cost measures capture liquidity (incl. price impact) 4 1. Literature Review I: economic history • Rajan & Zingales (2003): German pre-1913 stock market development higher than US • Baltzer (2006): price differentials across stock exchanges negligible • Gelman & Burhop (2008) – weak information efficiency on a rather high level – Efficiency worsens during crises 1901, 1913 • Gehrig & Fohlin (2006) – estimate effective transaction costs for Berlin stock exchange in 1880, 1890, 1900, 1910. Find gradual decline. – find inverse relationship to size 5 1. Contribution • Transaction costs were on average low, but rather variable in time and crosssection • Transaction costs are inversely influenced by size and previous year returns; are higher in crises • There is a significant positive liquidity premium, which is more pronounced than market risk and size premia 6 2. Historical background I • Berlin Stock Exchange (BSE) was the major German stock exchange since 1870-s • Steadily increasing # of traded companies, around 1000 in 1913 • Trading 6 days per week, one price per day • Call-auction mechanism with a specialist • Presence of informed insiders possible 7 Berlin Stock market performance Balkan war Bank run in US Leipziger Bank defaults 500 450 400 350 300 250 200 150 100 50 Daily Index Eube's market index Ronge's DAX-30 18.04.1913 30.11.1910 23.07.1908 08.03.1906 24.10.1903 15.06.1901 31.01.1899 14.09.1896 05.05.1894 31.12.1891 0 8 German aggregate stock trading volume (in bln mark) 100 80 60 40 1912 1910 1908 1906 1904 1902 1900 1898 1896 1894 1892 20 9 2. Historical background II • Major crises with impact on efficiency: – Bankruptcy of Leipziger Bank 1901 – Balkan war fear 1913 • Fixed relative transaction costs: – Transaction tax: 0.01% up to 04/1894; 0.02% to 10/1900 and 0.03% until the end of the sample – Broker fee: official 0.05%; private 0.025% – Provisions for intermediaries: 0.1-0.33% – Total round-trip transaction cost: 0.252-0.82% – Tick size 0.05 Mark (by stock prices of 40 Mark and above) less than 0.125% 10 3. Data • Daily stock prices for 27 stocks (hand-collected from Berliner Börsenzeitung) 1892-1913, 6692 observations per company – Industries: banking, machinery, chemicals, mining, textile, etc. – Requirement: listed during the whole period, <30% zero returns • Trading volume is available only on annual basis aggregated for all German exchanges! • Daily stock index values (from Gelman/Burhop 2008) • Annual values for market capitalization – Heterogeneous: from 0.3 bln RM to 32.8 bln RM • Dividend amounts and dates 11 Descriptive statistics (selection) zeros 1 2 5 9 10 22 23 26 Name AG für Anilinfabrikation Allgemeine Elektricitätsgesellschaft Deutsche Bank Deutsche Spiegelglas Erdmannsdorfer Spinnerei Schering Schlesische Zinkhütten Siemens Glas-Industrie Value-weighted index Mean (ann.) 0.0678 (1) Average MCap. (mill M) 0.0008 2727 Max. Min. 0.1257 -0.2270 Std. Dev. 0.0082 Skewness -3.85 Kurtosis 126.25 0.1638 0.0336 0.0294 0.0687 0.0526 -0.0611 0.0333 -0.0544 0.0921 -0.0838 0.0065 0.0042 0.0080 -0.18 -1.64 -0.30 11.94 24.72 18.32 0.0807 0.1001 0.1877 0.0820 -0.0119 0.0716 14997 32778 643 0.0001 0.0162 0.0336 0.0287 0.0687 0.1143 0.0652 0.1079 0.0438 0.0296 0.0106 0.0083 0.0066 0.0058 0.0032 0.62 0.17 -0.52 -1.12 -1.68 13.70 10.17 33.99 19.17 30.78 0.2497 0.1630 0.2360 0.1966 n/a -0.0425 0.0610 -0.0582 -0.0273 0.165 286 1298 7947 2290 161344 -0.0774 -0.0657 -0.0853 -0.0576 -0.0562 12 3. Methodology I • Measure of full transaction costs (fixed costs + price impact): – LOT (1999): information-based measure ri,t ri,t* il if ri,t* il ri,t 0 if il < ri,t* ih ri,t ri,t* ih if ri,t* ih ri,t* i rm,t ei,t 13 3. Methodology I • Estimate with MLE L , , i , i rit , rmt l i h i rit il i rmt i 1 i 1 ih i rmt il i rmt i i 0 rit ih i rmt 2 i i S.T . il 0, ih 0, i 0, i 0, 1 14 3. Methodology I • Criticism of LOT measure – Zero returns may be due to noise trading – The measure is driven by the market return volatility – Does not incorporate other factors than market • Justification – Is the only available measure of the full transaction costs and not only spreads – Widely used in recent financial literature, e.g. Griffin et al. (2010, RFS); Lesmond (2005, JFE) 15 3. Methodology II: Determinants • Cross-section and Panel estimation • Dependent variable: annual effective TC (LOT measure) of a company • Regressors: – Market cap (for size) – Previous year returns – Aggregate trading volume or Time dummies 16 3. Methodology III: impact on asset pricing • Fama-MacBeth(1973) regression – monthly returns – factor loadings & firm characteristics • Factor: market risk (our index as proxy) • Characteristics: – Size – Daily return autocorrelation (momentum) – LOT transaction cost measure (for illiquidity) 17 4. Results: annual transaction costs TABLE 2: ANNUAL AVERAGE OF TRANSACTION COSTS Year LOT 1.454 1892 1.584 1893 1.072 1894 0.925 1895 0.805 1896 0.814 1897 0.908 1898 0.878 1899 1.029 1900 1.678 1901 0.977 1902 0.848 1903 0.825 1904 0.696 1905 0.658 1906 0.775 1907 0.846 1908 0.731 1909 1.039 1910 0.713 1911 0.883 1912 1.124 1913 Average 0.966 18 4. Results: annual transaction costs LOT 2 1.5 1 0.5 0 1892 1895 1898 1901 1904 1907 1910 191319 29 .1 15 12 13 10 05 06 03 02 23 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 -0.5 21 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 2. 1 2. 1 2. 1 91 3 91 1 90 9 90 7 90 5 90 3 90 1 89 9 89 6 89 4 89 2 4. Transaction costs BSE 18921913: rolling window 2 1.5 roll gkn lot 1 0.5 0 20 4. Results: time series of transaction costs • Transaction costs are low: average LOTmeasure of 0.97%, – lower than for the upper decile of NYSE (1.23%) in 1963-1990 (Lesmond et al. 1999) – better than any of the emerging stock markets in 1990-s (Lesmond 2005) – But a bit above than DJIA costs of 0.6% 19701980 (Goyenko et al. 2009) • High variation: from 0.66% (1906) to 1.68% (1901) 21 Appendix 1: Average transaction costs of corporations, included in the investigation Number Name Average LOT measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 AG für Anilinfabrikation Allgemeine Elektricitätsgesellschaft Berlin-Anhaltinische Maschinenbau Bochumer Bergwerk (Lit C) Bank für Handel und Industrie Deutsche Bank Dresdner Bank Deutsche Jute Spinnerei und Weberei Deutsche Spiegelglas Erdmannsdorfer Spinnerei Gelsenkirchener Bergwerksgesellschaft Gerresheimer Glashütten Hallesche Maschinenfabriken Harpener Bergbau AG Kattowitzer AG für Bergbau und Eisen Maschinenfabrik Kappel Norddeutsche Wollkämmerei Oberschlesische Portland-Cement AG Rheinische Stahlwerke Rositzer Zuckerfabrik Schaaffhausen'scher Bankverein Chemische Fabrik vormals Schering Schlesische Zinkhütten Schlesische Leinen-Industrie Schultheiss Brauerei Siemens Glas-Industrie Stettiner Chamottewaren 0.943 0.520 0.902 3.164 0.543 0.384 0.446 1.109 1.097 1.689 0.427 1.284 1.112 0.425 0.667 1.239 1.135 1.094 0.781 1.053 0.572 1.001 0.959 1.183 0.684 0.776 0.905 22 4. Determinants of transaction costs: Cross-sectional results Average LOT measure 4 S iLOT 4.92 0.19 ln MC i1892 e€i , 0.62 0.03 R 2 0.64, e€i 0, 0.202 2 0 5 7.5 10 ln(MCap) 23 4. Determinants of transaction costs: panel Constant (1) FE (2) FE (3) FE (4) FE (5) RE 1.00*** 0.96*** 0.94*** 1.79*** 1.85*** (0.06) (0.05) (0.07) (0.19) (0.20) Sit-1 (6) GMM 0.44*** (0.01) MCit/ MCit -3.12** (1.57) -2.59** -2.59 -2.58 -4.29*** -0.28 (1.19) (1.91) (1.59) (0.73) lnPit-1 -0.25 -0.34** -0.45*** -0.44*** -0.11*** (0.16) (0.16) (0.16) (0.16) -0.20*** -0.20*** -0.22*** (0.05) (0.05) (0.01) N lnTVt t1901 (1.50) (0.04) 0.26*** (0.08) t1913 0.25*** (0.07) Time Y Y N N N 0.56 0.60 0.48 0.46 0.27 effects R2 24 4. Determinants of transaction costs: panel Constant (1) FE (2) FE (3) FE (4) FE (5) RE 1.00*** 0.96*** 0.94*** 1.79*** 1.85*** (0.06) (0.05) (0.07) (0.19) (0.20) Sit-1 (6) GMM 0.44*** (0.01) MCit/ MCit -3.12** (1.57) -2.59** -2.59 -2.58 -4.29*** -0.28 (1.19) (1.91) (1.59) (0.73) lnPit-1 -0.25 -0.34** -0.45*** -0.44*** -0.11*** (0.16) (0.16) (0.16) (0.16) -0.20*** -0.20*** -0.22*** (0.05) (0.05) (0.01) N lnTVt t1901 (1.50) (0.04) 0.26*** (0.08) t1913 0.25*** (0.07) Time Y Y N N N 0.56 0.60 0.48 0.46 0.27 effects R2 25 4. Determinants of transaction costs: results • Inverse relation with size – explains about 2/3 of transaction cost variation in cross-section and 23% in a panel set-up – One std increase in share of m. cap. (0.05) leads to 0.125-0.2 decrease in transaction costs – significance vanishes in FE set-up if we include past returns • Inverse relationship with previous year returns explains about 10% – One std decrease in past returns (0.126) leads to apprx 0.05 increase in LOT 26 4. Determinants of transaction costs: results • Transaction costs are about 0.25 percentage points higher in crises years • Transaction costs are inversely related to trade volume – One std increase in log trading volume (0.25) induces 0.05 decrease in transaction costs 27 4. Effects of transaction costs on asset pricing Constant Market beta Transaction (1) (2) (3) (4) .0018 -.0024 .0024 .0034 (.0014) (.0021) (.0107) (.0108) -.0003 .0016 .0013 -.0001 (.0019) (.0020) (.0021) (.0022) .3266** .3068* .3055* (.1324) (.1773) (.1771) -.0002 -.0002 (.0004) (.0004) cost lagged TC Size S Momentum M .0105* (.0058) Average R2 0.07 0.12 0.16 0.20 # of cross-sections T 264 252 252 252 28 4. Asset pricing results • We find support of Amihud (2002): – Lagged transaction costs increase expected return – Contemporaneous TC – decrease returns • CAPM doesn’t work • Size effect is absorbed by ex-ante transaction cost measure • Momentum is positive with tendency to significance 29 4. Asset pricing results • Different specifications of liquidity risk do not yield significant results 30 5. Conclusion • Transaction costs of the Berlin Stock Exchange were on average rather low as early as 1892-1913 • Size and past returns were negatively and crises were positively related to transaction costs • Illiquidity was the primary concern of investors by asset pricing, levied a positive premium 31 Thank you for your attention 32
© Copyright 2026 Paperzz