Proofs Using Our Identities Reciprocal Relationships 1 sec cos 1 csc sin 1 cot tan Negative Relationships csc( ) csc sin( ) sin y y - x -y Negative Relationships sec( ) sec cos( ) cos y - x x Negative Relationships cot( ) cot tan( ) tan y y - x x -y x y r 2 y 2 2 P(x, y) or P(rcos, rsin) r cos r sin r 2 r 2 2 2 2 y x x r cos r sin r 2 2 2 r r r 2 2 2 2 cos 2 sin 2 1 2 sin cos 1 sin cos 1 sin 2 cos 2 1 2 2 sin sin sin 2 sin 2 cos 2 1 2 2 cos cos cos 2 2 2 1 cot 2 csc2 2 2 tan 2 1 sec2 Pythagorean Relationships sin cos 1 2 2 1 cot 2 csc2 tan 1 sec 2 2 Start by simplifying the most complicated side, here the left side, and simplify until you get the right side. cot A sec2 A tan A cos 2 A 1 2 2 sin A cos A Prove: cot A(1 tan 2 A) 2 csc A tan A cot A cot A sec2 A cot 2 A sec2 A 1 2 sin A 2 csc A Prove: sec x sin x tan x cos x 1 sin x sin x cos x cos x 1 sin x cos x 2 1 sin 2 x cos x cos x 2 cos x cos x Prove: Prove: Prove: tan x cot x cot x 2 sec x tan 2 1 sec sec 1 ln 1 cos ln 1 cos 2ln sin Prove: tan 2 x 2 sin x 2 1 tan x Prove: tan 1 sec 2csc 1 sec tan Prove: sin cos cos sin sec csc sin cos Prove: 1 sin 2 x 2 2 sin x cos x 2 1 cot x Prove: cot 2 x cos2 x sin 2 x csc2 x Prove: (sec tan )(csc 1) cot Prove: cos x sin x 1 2cos x Prove: sec( x) sec( x)sin 2 x cos x Prove: 1 csc cot cos sec 4 4 2 Prove: tan x sin x sec x 3 1 cos x sin x Prove: sin x 1 cos x 2csc x 1 cos x sin x Prove: 1 csc sec x cot cos
© Copyright 2026 Paperzz