Dealing with Hamiltonian Structure: Challenges and Successes David S. Watkins [email protected] Department of Mathematics Washington State University Cortona, September 2008 – p. Alternating Pencils Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 alternating, even, odd Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 alternating, even, odd Example: anisotropic solids, Lamé equations Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 alternating, even, odd Example: anisotropic solids, Lamé equations (λ2 M + λG + K)v = 0 Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 alternating, even, odd Example: anisotropic solids, Lamé equations (λ2 M + λG + K)v = 0 large, sparse matrices Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 alternating, even, odd Example: anisotropic solids, Lamé equations (λ2 M + λG + K)v = 0 large, sparse matrices compute a few smallest eigenvalues Cortona, September 2008 – p. Alternating Pencils (λk Ak + λk−1 Ak−1 + · · · + A0 )v = 0 alternating, even, odd Example: anisotropic solids, Lamé equations (λ2 M + λG + K)v = 0 large, sparse matrices compute a few smallest eigenvalues symmetry of spectrum Cortona, September 2008 – p. Spectrum of an Alternating Pencil Cortona, September 2008 – p. Reduction of Order Cortona, September 2008 – p. Reduction of Order (linearization) Cortona, September 2008 – p. Reduction of Order (linearization) same as for differential equations Cortona, September 2008 – p. Reduction of Order (linearization) same as for differential equations w = λv, Cortona, September 2008 – p. Reduction of Order (linearization) same as for differential equations w = λv, −λM v + M w = 0 Cortona, September 2008 – p. Reduction of Order (linearization) same as for differential equations w = λv, −λM v + M w = 0 λ G M −M 0 v w + K 0 0 M v w = 0 0 Cortona, September 2008 – p. Reduction of Order (linearization) same as for differential equations w = λv, −λM v + M w = 0 λ G M −M 0 v w + K 0 0 M v w = 0 0 structure is preserved Cortona, September 2008 – p. Reduction of Order (linearization) same as for differential equations w = λv, −λM v + M w = 0 λ G M −M 0 v w + K 0 0 M v w = 0 0 structure is preserved Mackey/Mackey/Mehl/Mehrmann Cortona, September 2008 – p. Factorization Cortona, September 2008 – p. Factorization G M −M 0 = I 0 1 2G M T 0 I −I 0 I 0 1 2G M Cortona, September 2008 – p. Factorization G M −M 0 = I 0 1 2G M J= T 0 I −I 0 0 I −I 0 I 0 1 2G M Cortona, September 2008 – p. Factorization G M −M 0 = I 0 1 2G M J= T 0 I −I 0 0 I −I 0 I 0 1 2G M N = LT JL Cortona, September 2008 – p. Factorization G M −M 0 = I 0 1 2G M J= N = LT JL A − λN ⇒ T 0 I −I 0 0 I −I 0 I 0 1 2G M J T L−T AL−1 − λI Cortona, September 2008 – p. Factorization G M −M 0 = I 0 1 2G M J= T 0 I −I 0 0 I −I 0 I 0 1 2G M N = LT JL A − λN ⇒ J T L−T AL−1 − λI Hamiltonian matrix: (JH)T = JH Cortona, September 2008 – p. Factorization G M −M 0 = I 0 1 2G M J= T 0 I −I 0 0 I −I 0 I 0 1 2G M N = LT JL A − λN ⇒ J T L−T AL−1 − λI Hamiltonian matrix: (JH)T = JH Hamiltonian matrix ⇔ alternating pencil Cortona, September 2008 – p. Special Case Cortona, September 2008 – p. Special Case λ G M −M 0 v w + K 0 0 M v w = 0 0 Cortona, September 2008 – p. Special Case λ G M −M 0 G M −M 0 = v w + I 0 1 2G M K 0 0 M T 0 I −I 0 v w = 0 0 I 0 1 2G M Cortona, September 2008 – p. Special Case λ G M −M 0 v w + K 0 0 M T v w = 0 0 I 0 0 I I 0 = 1 1 G M −I 0 2 2G M 1 I 2G K 0 I 0 H =J 0 I 0 M −1 − 21 G I G M −M 0 Cortona, September 2008 – p. H =J I 0 1 2G I K 0 0 M −1 I 0 − 21 G I Cortona, September 2008 – p. H =J I 0 1 2G I K 0 0 M −1 I 0 − 21 G I Don’t form H explicitly. Cortona, September 2008 – p. H =J I 0 1 2G I K 0 0 M −1 I 0 − 21 G I Don’t form H explicitly. Use a Krylov subspace method. Cortona, September 2008 – p. H =J I 0 1 2G I K 0 0 M −1 I 0 − 21 G I Don’t form H explicitly. Use a Krylov subspace method. But we want the smallest eigenvalues. Cortona, September 2008 – p. H =J I 0 1 2G I K 0 0 M −1 I 0 − 21 G I Don’t form H explicitly. Use a Krylov subspace method. But we want the smallest eigenvalues. −1 1 I 0 K 0 I −2G −1 H = 1 JT 0 M 0 I 2G I Cortona, September 2008 – p. LQG Control Problem Cortona, September 2008 – p. LQG Control Problem ẋ = Ax + Bu Cortona, September 2008 – p. LQG Control Problem ẋ = Ax + Bu R ∞ 1 T 1 T T I(x, u) = 0 2 x Qx + x Su + 2 u Ru dt Cortona, September 2008 – p. LQG Control Problem ẋ = Ax + Bu R ∞ 1 T 1 T T I(x, u) = 0 2 x Qx + x Su + 2 u Ru dt R∞ T L(x, u, µ) = I(x, u) + 0 µ (ẋ − Ax − Bu) dt Cortona, September 2008 – p. LQG Control Problem ẋ = Ax + Bu R ∞ 1 T 1 T T I(x, u) = 0 2 x Qx + x Su + 2 u Ru dt R∞ T L(x, u, µ) = I(x, u) + 0 µ (ẋ − Ax − Bu) dt T x Q −A S ẋ 0 I 0 −I 0 0 µ̇ − −A 0 −B µ = 0 u S T −B T R u̇ 0 0 0 Cortona, September 2008 – p. LQG Control Problem ẋ = Ax + Bu R ∞ 1 T 1 T T I(x, u) = 0 2 x Qx + x Su + 2 u Ru dt R∞ T L(x, u, µ) = I(x, u) + 0 µ (ẋ − Ax − Bu) dt T x Q −A S ẋ 0 I 0 −I 0 0 µ̇ − −A 0 −B µ = 0 u S T −B T R u̇ 0 0 0 skew-symmetric/symmetric Cortona, September 2008 – p. Associated eigenvalue problem Cortona, September 2008 – p. Associated eigenvalue problem T v Q −A S v 0 I 0 λ −I 0 0 w − −A 0 −B w = 0 y S T −B T R y 0 0 0 Cortona, September 2008 – p. Associated eigenvalue problem T v Q −A S v 0 I 0 λ −I 0 0 w − −A 0 −B w = 0 y S T −B T R y 0 0 0 H= −1 T −1 T A − BR S BR B Q + SR−1 S T −AT + SR−1 B T Cortona, September 2008 – p. Associated eigenvalue problem T v Q −A S v 0 I 0 λ −I 0 0 w − −A 0 −B w = 0 y S T −B T R y 0 0 0 H= −1 T −1 T A − BR S BR B Q + SR−1 S T −AT + SR−1 B T Stable invariant subspace is wanted. Cortona, September 2008 – p. Associated eigenvalue problem T v Q −A S v 0 I 0 λ −I 0 0 w − −A 0 −B w = 0 y S T −B T R y 0 0 0 H= −1 T −1 T A − BR S BR B Q + SR−1 S T −AT + SR−1 B T Stable invariant subspace is wanted. complete eigensystem Cortona, September 2008 – p. Working Directly with the Pencil Cortona, September 2008 – p. 1 Working Directly with the Pencil Hamiltonian ⇔ alternating pencil M − λN Cortona, September 2008 – p. 1 Working Directly with the Pencil Hamiltonian ⇔ alternating pencil M − λN symplectic ⇔ palindromic pencil G − λGT Cortona, September 2008 – p. 1 Working Directly with the Pencil Hamiltonian ⇔ alternating pencil M − λN symplectic ⇔ palindromic pencil G − λGT Schröder (Ph.D. 2008) Cortona, September 2008 – p. 1 Working Directly with the Pencil Hamiltonian ⇔ alternating pencil M − λN symplectic ⇔ palindromic pencil G − λGT Schröder (Ph.D. 2008) Kressner/Schröder/Watkins (2008) Cortona, September 2008 – p. 1 Working with Hamiltonian Matrices Cortona, September 2008 – p. 1 Working with Hamiltonian Matrices symplectic matrix: S T JS = J Cortona, September 2008 – p. 1 Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations Cortona, September 2008 – p. 1 Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations Cortona, September 2008 – p. 1 Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations isotropic subspace: U T JU = 0 Cortona, September 2008 – p. 1 Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations isotropic subspace: U T JU = 0 isotropy and symplectic matrices Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form PVL form (1981) Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) getting an isotropic Krylov subspace? Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) getting an isotropic Krylov subspace? Ammar/Mehrmann (1991) Cortona, September 2008 – p. 1 Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) getting an isotropic Krylov subspace? Ammar/Mehrmann (1991) new ideas needed Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier skew-Hamiltonian matrix: (JK)T = −(JK) Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier skew-Hamiltonian matrix: (JK)T = −(JK) H2 Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier skew-Hamiltonian matrix: (JK)T = −(JK) H2 more and bigger invariant subspaces Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier skew-Hamiltonian matrix: (JK)T = −(JK) H2 more and bigger invariant subspaces Krylov subspaces are automatically isotropic. Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier skew-Hamiltonian matrix: (JK)T = −(JK) H2 more and bigger invariant subspaces Krylov subspaces are automatically isotropic. reduction to Hessenberg form Cortona, September 2008 – p. 1 Skew-Hamiltonian matrices . . . . . . are easier skew-Hamiltonian matrix: (JK)T = −(JK) H2 more and bigger invariant subspaces Krylov subspaces are automatically isotropic. reduction to Hessenberg form make use of H 2 Cortona, September 2008 – p. 1 Symplectic U RV Decomposition Cortona, September 2008 – p. 1 Symplectic U RV Decomposition H = U R1 V T = V R2 U T Cortona, September 2008 – p. 1 Symplectic U RV Decomposition H = U R1 V T = V R2 U T T S B −T B R1 = and R2 = T 0 T 0 −S T Cortona, September 2008 – p. 1 Symplectic U RV Decomposition H = U R1 V T = V R2 U T T S B −T B R1 = and R2 = T 0 T 0 −S T H2 Cortona, September 2008 – p. 1 Symplectic U RV Decomposition H = U R1 V T = V R2 U T T S B −T B R1 = and R2 = T 0 T 0 −S T H2 eigenvalues of H Cortona, September 2008 – p. 1 Symplectic U RV Decomposition H = U R1 V T = V R2 U T T S B −T B R1 = and R2 = T 0 T 0 −S T H2 eigenvalues of H Benner/Mehrmann/Xu (199X) Cortona, September 2008 – p. 1 CLM Method Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span{e1 } invariant under H 2 Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span{e1 } invariant under H 2 ⇒ span{e1 , He1 } invariant under H Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span{e1 } invariant under H 2 ⇒ span{e1 , He1 } invariant under H Extract 1-D isotropic invariant subspace. Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span{e1 } invariant under H 2 ⇒ span{e1 , He1 } invariant under H Extract 1-D isotropic invariant subspace. Build an orthogonal symplectic similarity transformation. Cortona, September 2008 – p. 1 CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span{e1 } invariant under H 2 ⇒ span{e1 , He1 } invariant under H Extract 1-D isotropic invariant subspace. Build an orthogonal symplectic similarity transformation. Deflate. (many details skipped) Cortona, September 2008 – p. 1 Block CLM Method Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span{S, HS} invariant under H Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span{S, HS} invariant under H Extract k-dimensional isotropic invariant subspace. Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span{S, HS} invariant under H Extract k-dimensional isotropic invariant subspace. This is Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span{S, HS} invariant under H Extract k-dimensional isotropic invariant subspace. This is more robust, Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span{S, HS} invariant under H Extract k-dimensional isotropic invariant subspace. This is more robust, more efficient, Cortona, September 2008 – p. 1 Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span{S, HS} invariant under H Extract k-dimensional isotropic invariant subspace. This is more robust, more efficient, but we’re still working on it. Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1 Cortona, September 2008 – p. 1
© Copyright 2026 Paperzz